
 
 
 

  

 

SynApp2.org 

SynApp2 
Customization 
Web Application Generator Reference 

© 2010 Richard Howell. All rights reserved. 
2010-10-23 
 

http://www.linkedin.com/in/rhowelljr


© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 2 
http://www.synapp2.org 2010-10-23 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 3 
http://www.synapp2.org 2010-10-23 

SynApp2 Customization 

SynApp2 is a generalized, reusable body of program code whose behavior varies predictably, 
at key points, according to prevailing conditions and applicable rules. The underlying 
framework provides many elements and behaviors that may be subtly influenced or controlled 
outright, by various means. The setup – customization – of the mechanisms is how the 
business logic of a SynApp2 powered web applications is expressed. 
 
Display Name 

Perhaps the most common and basic customization, you'll likely make, will be to specify a 
legend, or display name, for columns where the table column name isn't suitable for the user 
interface (UI). In such cases, you may supply an alternative by entering a value as a comment 
for the field/column. The way you do this varies depending on the database engine involved. 
 
For MySQL, at least, using an administration tool such as phpMyAdmin can make life easier. 
If, for some reason, you’re using MySQL and you don’t have phpMyAdmin – please don’t 
waste another minute – get it. Download phpMyAdmin from http://www.phpmyadmin.net. 
 
Assuming that you’re using phpMyAdmin to manage your database and table structure, enter 

the display name into the Comments field as you CREATE or ALTER your tables. 

 
Adding a table column with phpMyAdmin: 
 

 

http://www.phpmyadmin.net/


© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 4 
http://www.synapp2.org 2010-10-23 

 

 

 

If you're using a command line interface to manage your database definitions, here are two 

possible ways to manipulate a field/column COMMENT. 

 
mysql>ALTER TABLE table1 CHANGE column1 column1 <col def> COMMENT 'My Column'; 

 
SQL>COMMENT ON COLUMN table1.column1 IS 'My Column'; 

 
If you do not customize a field/column display name, during PageGen, SynApp2 will generate 
a display name, from the field/column name, by replacing underscores with spaces and then 

converting the first character of each word to upper case (e.g. first_name  First Name). 

 
COMMENT Mechanism 

Beyond display names, the mechanism of using the field/column COMMENT to customize 

behavior, applies to numeric range validation, column initialization, default values and 
TIMESTAMP columns. 
 
Specialized tokens and expressions may appear as comma separated values (CSV) in the 

field/column COMMENT. The display name must always come first. If there is no alternative 

display name, a leading comma must be present, followed by customization tokens or 
expressions. 
 
Synopsis: <display name>, <token or expression>, <token or expression> ... 

 

Using the field/column COMMENT, in this way, encapsulates at least a few important 

customization elements into the database definition itself. The customizations may even prove 
to be portable between different database engines. You'll find it quick and convenient to 
specify basic display customization and validation limits as you define the database structure. 
 
Numeric Range Validation 

Use the COMMENT mechanism to cause SynApp2 to trigger a clear and concise diagnostic 

message, prompting the user to enter a valid value, anytime a corresponding field violates a 

numeric limit as the input (iform) is submitted. 

 
Synopsis: <display name>,min=<value> 

          <display name>,max=<value> 

 

Examples: Quantity, min=0.001, max=999999.999 

          Discount, min=0 

 
Notice the comma between display name and the validation expression. The comma must be 
present whether or not you specify a display name. 
 
SynApp2 will automatically trigger a diagnostic message if a negative value is entered for an 

UNSIGNED value, or if a fractional value is submitted for a field/column designated as any 

flavor of INT. If your database engine supports the UNSIGNED attribute, using it might be 

preferable to using a limit of min=0. 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 5 
http://www.synapp2.org 2010-10-23 

 

 

Form Field/Column Value Initialization 

If your database engine supports specifying simple default values, often as part of the table 
definition, then the specified values will be used to initialize form field/column values, unless 
specialized initialization has been defined – as described below. 
 
There are times when one or more values should be dynamically determined, returned to, and 
presented by the application UI during the interactive sequence of adding new records. 
 

Use the COMMENT mechanism to call out specialized initialization for column values. Value 

generation occurs as the input (iform) is initialized - after the Add event, but prior to the 

pending ACTION_INSERT being carried out. 

 
Synopsis: <display name>,auto=<function> 

          <display name>,init=<function> 

 
Examples: By,auto=login_username() 

          Customer Since,init=year_today() 

 
Notice the comma between display name and the key generation expression. The comma 
must be present whether or not you specify a display name. 
 

The auto token will cause related input elements to be generated with the READONLY 

attribute.  
 
Several pre-defined functions are available: 
 

 login_username() 

 date_today() 

 weekday_today() 

 day_today(),  

 month_today() 

 year_today() 

 

The pre-defined function definitions appear in _shared_/custom.inc.php. 

 
See Custom Initialization Functions, later in this document, for information about how to create 
your own functions. 
 
Note that primary key (PK) values must be generated and applied by mechanisms 

implemented within your database engine. For MySQL, AUTO_INCREMENT is typically used. 

You may use any procedures and/or trigger support that your engine provides as long as it’s 
automatic and transparent. 
 
  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 6 
http://www.synapp2.org 2010-10-23 

Applying Default Values on Insert or Update 

You can use the COMMENT mechanism and the ON_EMPTY_VALUE_SET_DEFAULT token to 

cause SynApp2 to apply the specified field/column DEFAULT value, during a record INSERT or 

UPDATE operation, if the corresponding value is left empty (blank) as the input (iform) is 

submitted. 
 
Admittedly, this is not obviously expected behavior for your end-user. And, if you don’t like it – 
then don’t use it. But – the behavior can be useful, and it doesn’t require additional UI control 
elements to make it work. A reminder note as part of the display name or a user trained 
according to a policy of – “if in doubt, leave the field blank” – may be all that is needed to have 
a convenient and effective way to restore a default value. 
 

Do not use the ON_EMPTY_VALUE_SET_DEFAULT token if the field/column, is the primary key 

(PK), a foreign key (FK), or in the case of MySQL, if the type is TIMESTAMP. 

 
Required Values 

If your design requires users to enter a value for a field, use NOT NULL for the field/column 

when you CREATE or ALTER the table. If NOT NULL is specified, SynApp2 will generate a 

diagnostic message prompting the user to enter a value, anytime a corresponding field 

remains empty (blank) as the input (iform) is submitted. 

 
TIMESTAMP Columns 

Database field/columns defined as TIMESTAMP are treated as read-only on any input (iform) 

where they appear. Typically, there is only one TIMESTAMP field per table. How the value of 

the TIMESTAMP field value is determined varies according to the database engine. 

 

MySQL provides TIMESTAMP properties that make it relatively easy to define a single 

field/column that will set the value when a record is inserted and/or updated. With a little more 

work, it’s possible to define two columns, one that will reflect the TIMESTAMP of the record 

creation (insert) and another that will track the TIMESTAMP of the last update. 

 

Define the TIMESTAMP column to track record creation as: 

 NOT NULL DEFAULT '0000-00-00 00:00:00'.  

 

Define a second TIMESTAMP column to track last record update as: 
 NOT NULL DEFAULT CURRENT_TIMESTAMP  

and with the attributes: 

ON UPDATE CURRENT_TIMESTAMP.  

 

SynApp2 will detect and automatically set the value of all TIMESTAMP columns that do not 

have the ON UPDATE attribute. This behavior effectively tracks when a new record is inserted. 

MySQL handles the record update column according to the attribute. 
 

The mechanisms for managing values for TIMESTAMP columns in other database engines, 

such as Oracle, will require other techniques. The column initialization mechanism, described 

above, can be used to set the value of a TIMESTAMP column used to approximate the time of 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 7 
http://www.synapp2.org 2010-10-23 

 

record creation. The value will reflect when the input (iform) is initialized and presented, not 

the moment of record insertion. 
 

Work is pending to provide means of managing not only TIMESTAMP values, but values that 

get computed and recorded when on_update or on_create events occur. 

 
Include File Mechanism 

The typical way to customize database query elements is with an include file that you create 
and maintain in the directory where your SynApp2 generated application resides. 
 

The name of the customization include file is custom.inc.php. An empty file is automatically 

created for you, when you generate the first page of your application. Put your application 
specific customizations in this file. SynApp2 also creates a similar file, named 

synapp2.inc.php. This is where SynApp2 stores customizations and state information that 

is manipulated via the SynApp2 pages - Options and PageGen. 
 

There is also a custom.inc.php file in the _shared_ directory. Customizations that are 

intended to affect all applications, that share a SynApp2 installation instance, should be done 
there. The local file is included after the shared file, so it is possible to override some things in 
the local file.  
 
Implementing Customization 

Most customization will take the general form of PHP statements that initialize elements of an 

associative array. The array is a member of the class custom and has the name m_data. The 

customization data structure values are typically a string, or an array with named elements. 

See the file _shared_/custom.php for implementation details. 

 
You can, of course, use any valid PHP expression(s) to construct these customization 
statements. Thus, imbedding something like {$my_var} within a customization value, or even 
within a key expression, is perfectly reasonable - it’s PHP code. Be sure to use single and 
double quotes appropriately. 
 
Use a plain-text editor to make changes to customization files. 
 

Here is an example of a very simple custom.inc.php: 
 

<?php 

$this->m_data[APPID]['sample'][DATABASE] = 'census'; 

?> 

 

The custom.inc.php file is also a place where you can define functions or anything else that 

you can use to support your customization objectives. 
 
IMPORTANT: Customization files are included from within the body of a function and therefore 
any variables that you define in customization files, have limited scope. Functions referenced 
by SynApp2 custom element initialization statements are called during instantiation of the 

custom object, and not when the customization elements are (later) accessed. 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 8 
http://www.synapp2.org 2010-10-23 

Customization Effects 

Some customizations affect the output of SynApp2 PageGen, as well as having an impact at 
application run-time. 
 
In general, customizations that affect whether or not a column of data gets produced will have 
an effect on the code written to the SynApp2 generated web pages. Also, customizations that 
trigger a request/response cycle, when a record is selected, result in some supporting 
elements and/or code needing to be written to the applicable web page(s). If changes are 
made to these kinds of customizations, you should use PageGen to re-generate potentially 
impacted pages. Changes to your database structure, should also be followed with re-
generation of related pages. 
 
At run-time, an instance of a customization object presents an interface, to other objects during 
execution of the SynApp2 server-side framework, which reflects values and behaviors for 
important logical abstractions, at key points, and in response to prevailing conditions. The 
customization object strategically parameterizes activity during all request/response cycles.  
 

Study the methods for class custom in the file _shared_/custom.php. Also, search the 

other PHP source files, in the _shared_ directory, to see where and how the custom class 

methods are invoked, while considering the potential effects. 
 
Interactive Customization 

The SynApp2 Options pages provide for interactive manipulation of many elements. 

 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 9 
http://www.synapp2.org 2010-10-23 

The customization values for the attributes on these pages are stored to the 

synapp2.inc.php file rather than the custom.inc.php file. In the discussions of 

customization elements, that that appear later in this document, you will see notations for 
attribute values that are managed from these pages. There is no need to create or edit them 
manually. SynApp2 will take care of the details.  
 

If any interactively definable element happens to appear in the custom.inc.php file, the 

corresponding GUI element will be disabled (grayed). To enable interactive manipulation, 

move the statement from custom.inc.php to synapp2.inc.php. Be sure that the statement 

appears inside the existing output delimiter tags: <!--{inc}--> <!--{/inc}-->, and on 

its own (single) line. 
 
Display customizations that involve a Report Column, or Reporting Customization Items such 
as Title, Page Size, etc., are effective immediately. Customizations that affect query result 

rows, such as Order (i.e. ORDER BY) or produce values, such as Detail Summary Cols, are 

also effective immediately. All other changes – that affect page layout - will require that pages 
be regenerated. Use the PageGen – Regenerate All feature to quickly incorporate display 
options, for the various forms, into your application. 
 
Many of the interactively customized elements are expressed as PHP code. It is essential that 
the code be, at the very least, syntactically correct, i.e., parsable.  
 
If SynApp2 detects a problem, you will see an error dialog, similar to the following: 

 
  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 10 
http://www.synapp2.org 2010-10-23 

Reference to an undefined function produces a message similar to: 

 
Literal values must be enclosed in quotes, or you’ll see a message like: 

 
  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 11 
http://www.synapp2.org 2010-10-23 

If by some means, you do manage to get invalid PHP code written to either custom.inc.php 

or synapp2.inc.php you may see – and only if browser popup windows are enabled – the 

SynApp2 popup Message Window. 
 
An error message display: 

 
And, anytime the XML response cannot be parsed, your login and authorization cannot be 
determined. You will see the login prompt, as this the default behavior for a page. But, if the 
message appears while you’re editing customization files, it doesn’t mean that you should login 
again. 
 
The Please Login prompt: 

 
If you see the SynApp2 popup Message Window displayed with an XML Parsing Error, and/or 
you see Please Login appear – after changing a customization element or expression – then 

there is almost certainly a problem with either or both of the inc.php files that must be 

corrected by manually editing.  
 
In that case, open the file(s), find and correct the problem(s), and save the file(s) back to the 
server. Then, refresh/reload the page in your browser to resume your work. 
 
Once the problem has been corrected and the page refreshed, the login prompt should go 
away – without having to login again. 
  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 12 
http://www.synapp2.org 2010-10-23 

 

 

 

Custom Initialization Functions 

When the built-in column value initialization functions aren’t enough, you can make your own. 
 
A sample function to generate a next order number appears below. 
 
function order_number() 

{ 

    $dbx = get_dbx(); 

 

    // TODO: reserve/lock pending order number 

    return 1 + $dbx->get_query_value('select max(order_no) from orders'); 

} 

 
Your function returns the column initialization value as a number or string. 
 

Use the COMMENT mechanism, described earlier, to integrate your function: 

 
Order Number,init=order_number() 

 

You may define your custom function(s) directly in the local custom.inc.php file, but also 

consider using a PHP include or require statement to incorporate a separate file. 

 
Custom Validation Functions 

All posted column variables are automatically validated against intrinsic rules for their data 
types (e.g. check for valid INT, DECIMAL, UNSIGNED, DATE, TIME, NOT NULL, etc.) and 
according to any optionally specified min/max limits. These tests are considered to be primary 
validation because all tests are carried out independently with regard to the validity or values of 
any other concurrently posted column variables. 
 
More sophisticated primary validation tests can be defined and carried out for column variables 
representing such things as email addresses or telephone numbers. 
 
When you need to validate a column variable value against the value or values of one or more 
concurrently posted column variables, secondary validation is appropriate. 
 
The invocation of secondary validation functions are deferred until after primary validation of all 
concurrently posted column variables has been completed. Secondary validation functions are 
called only when the named column variable has satisfied primary validation. The validation 
state of all concurrently posted column variables are passed to a secondary validation function 
via the feedback parameter. 
 
A sample customization entry and primary validation function appear below: 
 
$this->m_data[APPID]['yourapp'][QID]['customer'][VALIDATOR] 

[VALIDATOR_PRIMARY]['email'] = 'customer_email'; 

 

function customer_email($col_name, $col_value, $display_name, &$col_vars) 

{ 

    $msg = ''; 

 

    if (!is_email($col_value)) 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 13 
http://www.synapp2.org 2010-10-23 

 

 

    { 

        $msg = "Please enter a valid email address in the {$display_name} field."; 

    } 

 

    return $msg; 

} 

 
A sample customization entry and secondary validation function appear below: 
 
$this->m_data[APPID]['yourapp'][QID]['schedule'][VALIDATOR] 

[VALIDATOR_SECONDARY]['sched_end'] = 'sched_end'; 

 

function sched_end($col_name, $col_value, $display_name, &$col_vars, &$feedback) 

{ 

    $msg = ''; 

 

    if (empty($feedback['sched_beg']) && $col_value <= $col_vars['sched_beg']['v']) 

    { 

        $msg = "{$display_name} must come after {$col_vars['sched_beg']['v']}"; 

    } 

 

    return $msg; 

} 

 
The return value of a validation function is a string. An empty string indicates successful 
validation. Indicate validation failure with the exact message text you want to appear in the 

IFORM (Input Form) feedback label element bound to subject column variable. 

 

Notice the check for the empty $feedback array element. This test establishes that the 

concurrently posted variable that the validity test of $col_value depends on, has passed 

primary validation. 
 
It is not a safe practice to assess the secondary validation status of column variables based 

upon the $feedback array, because the order of individual variable validation is not 

guaranteed.  In other words, any concurrently posted column variable, upon which a 
secondary validation of another column variable depends, should not also be subject to 
secondary validation.  
 
You are not required to test or compare column variable values against one another in a 
validation function called within the secondary context. The implementation may be similar or 
identical to that of function designed for the primary context. 
 

You may define your custom function(s) directly in the local custom.inc.php file, but also 

consider using a PHP include or require statement to incorporate a separate file. 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 14 
http://www.synapp2.org 2010-10-23 

 

Custom Processing Functions 

The power to do just about anything is available through the framework of the custom 
processing mechanism. You can accomplish extensive data manipulation and generate 
markup for the browser. 
 
The typical pattern for employing custom processing starts with web page and JavaScript code 

that initiates a SynApp2 request/response cycle using MODE_ADHOC. Use of this mode is not 

requirement. You may define custom processing functions that respond to any query ID (QID). 

If your function returns true, the current request/response cycle continues normally. A false 

return value circumvents additional action. The actual effect on program flow depends on the 
point, or context, the function invocation.  
 

As of SynApp2 version 0.1.7, there is only one point where a custom processing function 

can have an effect on program flow. Review _shared_/action.php and the code involving 

the class method action::do_process(). 

 
A suitable web page may be created by copying and then modifying an existing SynApp2 
generated page from the application directory where you are working and including the new 
page in the application navigation tabs. The processing web page is then directly customized 
with static markup including controls to provide parameters and to invoke processing, or 
markup for UI can be generated dynamically, or both. 
 
A sample web page to support a custom processing function: 
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 

"http://www.w3.org/TR/html4/strict.dtd"> 

<html> 

<head> 

<title> 

Temp Conversion 

</title> 

<link rel="stylesheet" type="text/css" href="../_shared_/standard.css"> 

<script type="text/javascript" src="../_shared_/synapp2.js"></script> 

 

<script type="text/javascript"> 

 

set_appid('census'); 

set_pid('temp_conv'); 

 

function page_init() 

{ 

    do_init(); 

    do_app_nav("id_app_nav"); 

    map_vkey_action('id_iform_temp', VKEY_ENTER, request_wrapper, true); 

} 

 

function request_wrapper() 

{ 

    var cxlref = new cxl(); 

 

    if (cxlref) 

    { 

        cxlref.set_container("id_result"); 

        cxlref.set_filter("id_result", "id_iform_temp"); 

        cxlref.set_request_mode_adhoc(); 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 15 
http://www.synapp2.org 2010-10-23 

 

 

        cxlref.send_request("convert"); 

    } 

} 

 

</script> 

</head> 

<body id="id_body" onload="page_init();"> 

 

<div id="id_app_nav" class="class_app_nav"></div> 

 

<div id="id_page_content" class="class_page_content"> 

 

<div class="class_layout_group_std"> 

    <h3>Temperature Conversion</h3><br> 

    <div id="id_iform_temp" class="class_form_std"> 

        <label>Temperature F:</label> 

        <input type="text" name="_process_temp_F"><br> 

        <input value="Ok" type="button" onclick="request_wrapper();"><br> 

        <div id="id_result"></div> 

    </div> 

</div> 

 

<div id="id_page_msg" class="class_msg_std"></div> 

 

</div> 

</body> 

</html> 
 

Notice that the name attribute of the temperature input element has the magic "_process_" 

prefix (e.g. "_process_temp_F").  

 
Sample PHP code to integrate and implement a custom processing function: 
 
<?php 

 

$this->m_data[APPID]['census'][INCL][NAV] = 'temp_conv'; 

$this->m_data[APPID]['census'][QID]['convert'][PROCESS][PROCESS_MAIN] = 'F_to_C'; 

 

function F_to_C(&$args, &$action, &$adhoc_markup) 

{ 

    $temp_F = sprintf("%.2f", $args['temp_F']); 

    $temp_C = sprintf("%.2f", (5 / 9) * ($temp_F - 32)); 

 

    $adhoc_markup[] = "<h1>{$temp_F}F = {$temp_C}C</h1>"; 

 

    return true; // continue action 

} 

 

?> 

 

The temperature value passed to the function is retrieved from the $args[ ] array using the 

input element name without the magic "_process_" prefix (e.g. 'temp_F'). 

 

You may define your custom function(s) directly in the local custom.inc.php file, but also 

consider using a PHP include or require statement to incorporate a separate file. 

 
  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 16 
http://www.synapp2.org 2010-10-23 

You can try out the sample custom processing code by adding it to the Census application 
created by following the steps for Part A in the SynApp2 Walk through No. 1 document. 
 

1. Complete Part A of the walk through, at least as far as generating the city.htm page, 

as seen on page 9 of the walk through. 

2. Create a new temp_conv.htm web page file in the census application directory. See 

page 9 of the walk through if you need help finding the census application files. 

3. Copy and paste the sample web page code into your plain text editor and save as 

temp_conv.htm. 

4. Open the custom.inc.php file for the census application with your plain text editor. 

5. Copy, paste and save the sample PHP code – between but not including the opening 

<?php and closing ?> lines - into that file, between the existing <?php ?> tags. Use 

care to make sure that the result is a well-formed PHP file. 

6. Open the temp_conv.htm page in your browser: (You may need to login.) 

 

7. Enter a temperature value and click Ok: 

 

With a bit of imagination, you’ll find that you can create custom processing functions that are 
as powerful as you need them to be, and integrate them with your applications in any way that 
makes sense. 
  

http://www.synapp2.org/documentation/SynApp2_Walk_through_No1.pdf


© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 17 
http://www.synapp2.org 2010-10-23 

 

 

Custom Authorization and Record Filtering Functions 

The power to control access to areas of application functionality and data, based on situational 
context, is provided through simple, yet effective, mechanisms. Common scenarios that occur 
in everyday business can be modeled and used to gate access to key areas – including: 
specific applications, pages, reports, and processing. Further control over interactive data 
retrieval and manipulation features is also available and easy to establish. 
 
In the absence of custom authorization details, everything is accessible to logged in users. But, 
with a few line lines of code, you can tailor the exact level of feature and data availability any 
given user will see. 
 
You may define your custom authorization entries and function(s) directly in the local 

custom.inc.php file, but also consider using a PHP include or require statement to 

incorporate a separate file.  
 
Helper functions are defined and used to return important values for two key reasons – 
encapsulation and visibility. Functions are globally visible and are therefore may be referenced 
by expressions entered from the SynApp2 Options pages. 
 
Sample authorization entries and filtering functions: 
 
$this->m_data[APPID]['timelog'][AUTH_PID]['resource'] = admin_user(); 

$this->m_data[APPID]['timelog'][AUTH_RID]['resource'] = admin_user(); 

 

$this->m_data[APPID]['timelog'][QID]['resource'][AUTH_ADD] = ''; 

$this->m_data[APPID]['timelog'][QID]['resource'][AUTH_EDIT] = admin_user(); 

$this->m_data[APPID]['timelog'][QID]['resource'][AUTH_DELETE] = admin_user(); 

 

$this->m_data[APPID]['timelog'][QID]['activity'][AUTH_ADD] = admin_user(); 

$this->m_data[APPID]['timelog'][QID]['activity'][AUTH_EDIT] = admin_user(); 

$this->m_data[APPID]['timelog'][QID]['activity'][AUTH_DELETE] = admin_user(); 

 

 

function admin_user() 

{ 

    return 'timelog_administrator'; 

} 

 

$this->m_data[APPID]['timelog'][QID]['resource'][AUTH_RECS] = 'auth_recs_resource'; 

 

function auth_recs_resource() 

{ 

    $auth_recs_expr = ''; 

 

    $username = login_username(); 

 

    if ($username != admin_user()) 

    { 

        $auth_recs_expr = "username = '$username'"; 

    } 

 

    return $auth_recs_expr; 

} 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 18 
http://www.synapp2.org 2010-10-23 

 
 

$this->m_data[APPID]['timelog'][QID]['timelog'][AUTH_RECS] =  

'auth_recs_timelog'; 

 

$this->m_data[APPID]['timelog'][QID]['timelog_(by_resource)'][AUTH_RECS] = 

'auth_recs_timelog'; 

 

$this->m_data[APPID]['timelog'][QID]['timelog_(by_activity)'][AUTH_RECS] = 

'auth_recs_timelog'; 

 

function auth_recs_timelog() 

{ 

    $auth_recs_expr = ''; 

 

    $username = login_username(); 

 

    if ($username != admin_user()) 

    { 

        $id_resource = get_dbx()->get_query_value("select id from resource 

                                                   where username = '$username'"); 

 

        $auth_recs_expr = "id_resource = '$id_resource'"; 

    } 

 

    return $auth_recs_expr; 

} 

 

An AUTH_RECS function should return an SQL term that, if not empty, will be incorporated into 

the WHERE clause of complete SQL statements, generated by the SynApp2 framework, when 

the QID(s) you specify with customization entries are active. 
 
To prevent selection of records, you must return a valid expression. In a case where, for 
example, the logged in user should not be authorized to see any records, then return an 

expression that cannot be satisfied, e.g. id_resource = '', when incorporated into the 

WHERE clause of the controlling SQL statement. 
 

Your AUTH_RECS function(s) can access context information in many ways. The 

login_username() function, seen above, is only one example. The globally visible instance 

of the action object, established to handle every exchange cycle, has methods available to 

monitor many situational details, including primary and foreign key values of selected records. 
 

Methods like action::get_pk(), action:: get_pk_values(), and 

action::get_fk_constraint() return details about the records currently selected along 

the nodes of interaction of the active page flow. Other methods can provide details about the 
exchange action, mode, and submitted column (i.e. form) variables. Add the statement – 

global $g_action; – to the body of any customization function that needs to reference the 

action object. 

 
Any combination of information you can gather from the framework objects and queries of the 
data records, may be used to establish context and provide any details needed to produce the 
precise SQL terms returned by your functions. Related examples and design patterns are 
provided elsewhere. This text is but an introduction and a tickler to get you thinking about the 
possibilities. 
 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 19 
http://www.synapp2.org 2010-10-23 

 

During development, consider instrumenting your functions with calls to the 

add_debug_msg() function (_shared_/util.php) to emit debugging information. Use the 

function to monitor the state of variables via the SynApp2 Message Window. Use it much as 

you would the PHP variable handling functions var_dump() or  print_r(), but with the 

results formatted to work within the AJAX exchange cycle of the SynApp2 framework. 
 
The customization entries and functions, appearing above, can be exercised with the following 
MySQL table definitions: 
 
-- example database: timelog -- 

 

CREATE TABLE IF NOT EXISTS `activity` ( 

  `id` int(11) NOT NULL AUTO_INCREMENT, 

  `descr` varchar(40) NOT NULL COMMENT 'Description', 

  `code` char(16) DEFAULT NULL, 

  PRIMARY KEY (`id`), 

  UNIQUE KEY `descr` (`descr`) 

); 

 

CREATE TABLE IF NOT EXISTS `resource` ( 

  `id` int(11) NOT NULL AUTO_INCREMENT, 

  `name` varchar(24) NOT NULL, 

  `username` varchar(48) DEFAULT NULL, 

  `password` varchar(48) DEFAULT NULL, 

  `password_action` enum('no_change','encrypt') DEFAULT 'no_change', 

  PRIMARY KEY (`id`), 

  UNIQUE KEY `name` (`name`), 

  UNIQUE KEY `username` (`username) 

); 

 

CREATE TABLE IF NOT EXISTS `timelog` ( 

  `id` int(11) NOT NULL AUTO_INCREMENT, 

  `id_resource` int(11) NOT NULL, 

  `id_activity` int(11) NOT NULL, 

  `log_date` date NOT NULL COMMENT ',init=date_today()', 

  `log_hours` decimal(6,1) NOT NULL DEFAULT '8.0' COMMENT ',min=0.1,max=24.0', 

  PRIMARY KEY (`id`) 

); 

 
  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 20 
http://www.synapp2.org 2010-10-23 

 

 

Custom Application Username and Password Validation Functions 

The following discussion and example applies only to SynApp2 installations configured to work 
with MySQL. Work has already begun to support alternative access models for database 
engines such as Oracle. A sandbox model will make similar user management features 
available for one or more applications running from a single Oracle schema. 
 
Building on the earlier discussion about authorization and record filtering, we can easily add a 

few more customization entries and functions to the custom.inc.php file (for the timelog 

example), that will support user management from within the application. The techniques can 
be adapted for any application and specific database design. 
 
Sample authorization entries and validation functions: 
 

$this->m_data[APPID]['timelog'][QID]['users'][TABLE] = "resource"; 

 

$this->m_data[APPID]['timelog'][AUTH_PID]['users'] = admin_user(); 

$this->m_data[APPID]['timelog'][AUTH_RID]['users'] = admin_user(); 

 

$this->m_data[APPID]['timelog'][QID]['users'][AUTH_ADD] = admin_user(); 

$this->m_data[APPID]['timelog'][QID]['users'][AUTH_EDIT] = admin_user(); 

$this->m_data[APPID]['timelog'][QID]['users'][AUTH_DELETE] = admin_user(); 

 

 

$this->m_data[APPID]['timelog'][QID]['users'][VALIDATOR][VALIDATOR_PRIMARY] 

['username'] = 'validate_username_timelog'; 

 

function validate_username_timelog($col_name, $col_value,  

                                   $display_name, &$col_vars) 

{ 

    global $g_action; 

 

    $msg = ''; 

 

    if (!empty($col_value)) 

    { 

        if (preg_match('/[^a-z0-9_\.\-\@]+/i', $col_value) ||  

            $col_value != escape_sql_term($col_value)) 

        { 

            $msg = "{$display_name} contains disallowed characters"; 

        } 

        else 

        { 

            $update_filter = $g_action->is_update() ?  

                             (" and id != '" . $g_action->get_pk() . "'") :  

                             '' ; 

 

            if (get_dbx()->get_query_value("select count(*) from resource where 

                                           {$col_name} =  

                                           '{$col_value}'{$update_filter}")) 

            { 

                $msg = "{$display_name} already exists"; 

            } 

        } 

    } 

 

    return $msg; 

} 

 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 21 
http://www.synapp2.org 2010-10-23 

 

 

$this->m_data[APPID]['timelog'][QID]['users'][VALIDATOR][VALIDATOR_SECONDARY] 

['password'] = 'validate_password_timelog'; 

 

function validate_password_timelog($col_name, $col_value,  

                                   $display_name, &$col_vars) 

{ 

    global $g_action; 

 

    $msg = ''; 

 

    if (!empty($col_value) &&  

        ($password_action = &$col_vars['password_action']['v'])) 

    { 

        if ($col_value != escape_sql_term($col_value)) 

        { 

            $msg = "{$display_name} contains disallowed characters"; 

        } 

        else 

        { 

            if (preg_match('/encrypt/i', $password_action)) 

            { 

                $password_function = 'password'; 

 

                $password_encrypted = get_dbx()->get_query_value( 

                    "select {$password_function}('{$col_value}')"); 

 

                if (!empty($password_encrypted)) 

                { 

                    $col_vars[$col_name]['v'] = $password_encrypted; 

                    $password_action = 'no_change'; // MAGIC: 

                } 

                else 

                { 

                    $msg = "Unable to process {$display_name} value:  

                            {$password_function}('{$col_value}')"; 

                } 

            } 

        } 

    } 

 

    return $msg; 

} 

 

In order to employ the application login model, you would need an entry in 

_config_/access.inc.php. to map the logical name of the database to the database and 

table where the usernames and passwords are stored. 
 
It doesn’t technically matter where the entry appears, but it naturally goes with and below the 

section marked with the comments: // see access_app::auth_connect() 

 

Your access.inc.php file would need to incorporate the following line: 
 

$this->m_config[MAP_AUTH_INTERFACE_DEF]['timelog'] = new auth_interface_def('timelog', 'resource'); 

 

The entry specifies that user login and authentication for the timelog database/application 

will occur against the timelog.resource table. And, in the absence of explicit definitions, 

the default username and password field names and encryption function are used – e.g. 
resource.username, resource.password and the MySQL function password(). 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 22 
http://www.synapp2.org 2010-10-23 

 

Realistically, additional customization elements are needed to make the GUI for the timelog 
example look and operate as a finished application. You may download the complete source 
code for the application from: http://www.synapp2.org/documentation/timelog.MySQL.zip  
 
There are some login/authentication behaviors that are worth noting: 
 

It matters where you login. 
 

 If you successfully login via the welcome page of a SynApp2 generated application, 
that will provide authorization to access to that application, but not other generated 
applications, or to the SynApp2 Web Application Generator application. 

 

 If you successfully login via the SynApp2 welcome page (synapp2.htm), you will 

automatically be promoted to have access to all SynApp2 generated applications 

unless there is/are specific AUTH_ customizations to prevent that. 

 
In order to move back and forth (using the convenient breadcrumb links) between the SynApp2 
Web Application Generator application and a generated application, while developing and 

testing with the access_app model and username-based AUTH_RECS customization, it will be 

important to have matching login usernames in both the synapp2.users table and the 

configured application authentication table – that is – if you don’t want to logout and login in 
again, each time you want to switch your application focus. It is, however, perfectly reasonable 
to do that. 
 

You could also reference the synapp2.users table from your username-based AUTH_RECS 

customization, but that would frustrate simplicity and portability, especially when deploying to a 
shared server, due to logical vs. physical database names. It’s doable, but you’d have to be 
careful to make sure it all worked as you would expect, and without having to modify 
configurations or deviate from SynApp2 conventions.  
 
Two matching usernames means two passwords, but they don’t have to be the same. This 
would allow you to set up an administrative username for the generated application and a 

matching username in synapp2.users. Different passwords would guard against a person 

logging in as the administrative user of the generated application from having access to the 
SynApp2 Web Application Generator application. 
 
Another alternative, to setting up matching usernames, would be to open multiple browser 

instances – each with a separate session_id – logged in to the appropriate application. You 

could then switch back and forth between them without repeated logins. But, if you regenerate 
a page that is currently visible in another window, you may have to refresh your browser 
display to see changes. 
 
  

http://www.synapp2.org/documentation/timelog.MySQL.zip


© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 23 
http://www.synapp2.org 2010-10-23 

 

Customizing Data Views 

Your SynApp2 applications can be quickly empowered with alternate perspectives of the data 
for interactive manipulation, processing, reporting and export. Use the SynApp2 Tools – 
QueryID page to map named views to a basis table. Each secondary QueryID (i.e. QID) can 
be used to generate an interactive page and/or report. 
 
The data visualization virtues of spreadsheet pivot tables become available in nice, neat PDF 
reports. The timelog example uses multiple QueryID’s to report timelog by resource or by 
activity. The reports process the same data, but sort and group the rows differently. This kind 
of power makes it easy to visualize the answers to different business questions such as: What 
activates was each person (resource) working on over a given period, or, How much time (and 
money) is being spent on various activities over a given period. The answers come from 
exactly the same data, presented in a way that makes it easy to answer useful questions. 
 
The SynApp2 Tools – QueryID page used to create view mappings: 

 
The mappings cause entries to be generated into the synapp2.inc.php file of the active 

AppID (or database). 
 
$this->m_data[APPID]['timelog'][QID]['users'][TABLE] = "resource"; 

 

$this->m_data[APPID]['timelog'][QID]['timelog_(by_resource)'][TABLE] = 'timelog'; 

$this->m_data[APPID]['timelog'][QID]['timelog_(by_activity)'][TABLE] = 'timelog'; 

 
The literal values of the Secondary QueryID will automatically appear in the application and 
report navigation tabs and as filenames, if PageGen is used to generate corresponding pages 
or reports. 
 
As soon as you’ve mapped a new QueryID, you can use the Options pages to interactively 
customize Display attributes, column expressions and reporting details exactly as you would 
for any primary (i.e. natural) QueryID (or table). 
 
  

http://en.wikipedia.org/wiki/Pivot_table


© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 24 
http://www.synapp2.org 2010-10-23 

A SynApp2 generated Report Form for a secondary QueryID – Timelog (by Resource): 

 
A neatly formatted report to answer: “What activities are people working on?” 

 
  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 25 
http://www.synapp2.org 2010-10-23 

A SynApp2 generated Report Form for a secondary QueryID – Timelog (by Activity): 

 
A neatly formatted report detailing: “How time is being spent on each activity?” 

 
These are simple, yet practical, examples of how multiple data views can be used to answer 
different questions. 
 

There’s lots of power here. By mapping secondary QueryID’s and customizing ORDER, EXTRA, 

COL_ORDER and DETAIL_SUMMARY_COL expressions for generated reports, you can provide 

valuable data analysis tools. 
 
This is THE BIG TAKEAWAY:  Make sure you understand what multiple data views – that are 
quick and easy to create with SynApp2 - can mean for you and your clients. 
  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 26 
http://www.synapp2.org 2010-10-23 

 

 

Drag and Drop Functions 

Event driven drag and drop can be added to your SynApp2 applications. The mechanism is 
capable of managing and reflecting dynamic constraints with regard to what item or items can 
be dragged and where or upon which target elements the drag items may be dropped. 
 
The behavioral implementation is completely up to you. It can be as simple as repositioning an 
element, to affecting records in the application database tables. 
 
function on_dragBegin(drag_item, dx, dy) {} // OPTIONAL: implement this method for 

drag/drop 

 

function on_target_dragBegin(drag_target) {} // OPTIONAL: implement this method for 

drag/drop (eg. element.style.backgroundColor = 'white';) 

 

function on_target_dragEnd(drag_target) {} // OPTIONAL: implement this method for 

drag/drop (eg. element.style.backgroundColor = 'transparent';) 

 

function on_drag(drag_item, dx, dy) {} // OPTIONAL: implement this method for 

drag/drop 

 

function on_dragEnd(drag_item, drag_target, dx, dy) {} // IMPORTANT: implement this 

method for drag/drop 

 

At a minimum, you should implement on_dragEnd(). The implementation of this function 

could trigger a custom process request/response cycle, or be handled entirely within the 
browser local scripting, or some combination of the two. Enter or include your event handler 

code in your web page file. Use appropriate <script> elements. 

 

The drag_item and drag_target parameters are references to HTML DOM objects. The 

delta x and y position change values, in pixels, at the time the event was triggered, are passed 

as dx and dy.  

 
A SynApp2 JavaScript helper function can be useful in determining the effective position of 
HTML DOM objects: 
 
var pos = get_pos(<HTML DOM object reference>); 

 

var x = pos.left; 

var y = pos.top; 

 

The position data returned by get_pos() is the absolute position offset from the upper left of 

the browser viewport. The topic of browser window geometry is beyond the scope of this 
document. A comprehensive reference is JavaScript: The Definitive Guide, Fifth Edition by 
David Flanagan. 
 
Drag item elements are established by supplying a CSV string or simple array object to the 

function set_drag_items(idds). The values passed must be the id attribute values of any 

HTML DOM objects that are allowed to be dragged. This can be accomplished by either a 

direct call from the page script, or by a request/response cycle triggered by a page onload 

event (typically from page_init()), user interaction, or some other source. 

 
  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 27 
http://www.synapp2.org 2010-10-23 

 

 

You may optionally establish drag target elements using the same techniques as for drag 
items. A request/response cycle triggered by a dragBegin event can produce the set of drop 
targets that are valid for the item being dragged. 
 
Sample JavaScript to support dynamic drag and drop: 
 
QID_SCHEDULE = 'schedule'; 

 

function rmi_schedule() 

{ 

    var cxlref = new cxl(); 

 

    if (cxlref) 

    { 

        cxlref.set_container('id_schedule_result'); 

        cxlref.set_filter('id_schedule_result', 'id__iform__schedule'); 

        cxlref.set_request_mode_adhoc(); 

        cxlref.send_request(QID_SCHEDULE); 

    } 

} 

 

 

function on_dragBegin(drag_item, dx, dy) 

{ 

    set_extra_arg(QID_SCHEDULE, '_process_schedule_get_tid', drag_item.id); 

 

    rmi_schedule(); 

 

    set_extra_arg(QID_SCHEDULE, '_process_schedule_get_tid', ''); 

} 

 

function on_drag(drag_item, dx, dy) 

{ 

    drag_item.style.color = 'blue'; 

} 

 

function on_target_dragBegin(drag_target) 

{ 

    drag_target.style.backgroundColor = 'white'; 

} 

 

function on_target_dragEnd(drag_target) 

{ 

    drag_target.style.backgroundColor = 'transparent'; 

} 

 

function on_dragEnd(drag_item, drag_target, dx, dy) 

{ 

    var target_id = drag_target ?  drag_target.id : ''; 

 

    set_extra_arg(QID_SCHEDULE, '_process_schedule_item_id', drag_item.id); 

    set_extra_arg(QID_SCHEDULE, '_process_schedule_target_id', target_id); 

 

    rmi_schedule(); 

 

    set_extra_arg(QID_SCHEDULE, '_process_schedule_item_id', ''); 

    set_extra_arg(QID_SCHEDULE, '_process_schedule_target_id', ''); 

} 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 28 
http://www.synapp2.org 2010-10-23 

 

 

Notice the SynApp2 function set_extra_arg(qid, name, value). The name-value pairs 

persist as long as the containing page is displayed. They will be submitted with any 

subsequent requests generated having the same qid value. It is good practice to clear the 

extra arguments as soon as a request is triggered. Notice also, the magic '_process_' prefix. 

 
Whenever a SynApp2 request/response cycle is triggered, drag item or drag target id values, 
corresponding to HTML DOM objects of the requesting page, may be returned via data 

members of the markup class. See _shared/markup.php. 

 

The class data members, markup::m_IDD and markup::m_TDD, are PHP array objects that 

serve as output buffers used to compose a portion of the XML response. The m_IDD member 

is for drag item id values and m_TDD is for drag target id values. 

 
As of version 0.1.7 alpha, a formal interface to the markup class data members and the class 

instance that contains them has not been established. Use the PHP global $g_markup; 

statement to access the markup class instance supporting the request/response cycle. 
 
A sample custom processing function with PHP code to generate drag target id values: 
 

$this->m_data[APPID][<appid>][QID]['schedule'][PROCESS][PROCESS_MAIN] = 'schedule'; 

 

function schedule(&$argv, &$action, &$adhoc_markup) 

{ 

    if (!empty($argv['schedule_get_tid'])) 

    { 

        $drag_item_id = $argv['schedule_get_tid']; 

         

        $csv_target_ids = get_csv_target_ids($drag_item_id); // NOTE: your function 

         

        if (!empty($csv_target_ids)) 

        { 

            global $g_markup; 

            $g_markup->m_TDD[] = $csv_target_ids; // NOTE: empty square braces 

        } 

    } 

} 

 

When drag target id values are returned in an exchange response, the function 

on_target_dragBegin(drag_target), if implemented, will be called, in turn, for each 

target element. Use these notifications to update the UI to reflect valid drop targets for the item 

being dragged. Similar calls to on_target_dragEnd(drag_target) are made when a drag 

item is dropped. You are not required to implement either of these functions. 
 
A custom processing function can generate drag item id values. The significant difference 

from the example above is that the markup::m_IDD member is used. 
 

    global $g_markup; 

    $g_markup->m_IDD[] = $csv_item_ids; // NOTE: empty square braces 

 

It is also possible and reasonable to return (X)HTML markup along with drag item or drag 

target id values. Update the $adhoc_markup[] array object with well-formed (X)HTML code. 

The result will replace the innerHTML of the SynApp2 request container element. 
  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 29 
http://www.synapp2.org 2010-10-23 

 

Identifiers 

There are various defined values - identifiers - that serve as keys to the customization data 
structure. 
 
The identifiers are: 
 

 APPID 

 QID 

 

 AUTH_APPID 

 AUTH_QID 

 AUTH_PID 

 AUTH_RID 

 AUTH_RECS 

 AUTH_ADD 

 AUTH_EDIT 

 AUTH_DELETE 

 AUTH_PROCESS 

 

 DATABASE 

 TABLE 

 KEYMAP 

 

 ORDER 

 MACRO 

 LIST_MACRO 

 LIST_MACRO_ORDER 

 LIST_MACRO_FILTER  

 EXTRA 

 OMIT 

 INCL 

 TAB_ORDER 

 QUERY 

 SUBQUERY DEPRECATED – use EXTRA 

 FETCH 

 

 TITLE 

 LEGEND 

 LIMIT_ROWS 

 

 COL_OMIT 

 COL_SIZE 

 COL_ALIGN 

 COL_FORMAT 

 COL_EDITOR 

 COL_EDITOR_ROWS 

 COL_ATTRS 

 COL_ORDER 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 30 
http://www.synapp2.org 2010-10-23 

 

 

Identifiers - continued 
 

 RPT_PAGE_SIZE 

 RPT_PAGE_OREIENTATION 

 RPT_FONT_SIZE 

 RPT_FONT_FAMILY 

 RPT_CELL_BORDER 

 RPT_ROW_SHADE 

 RPT_ROW_SIZE 

 

 DETAIL_SUMMARY_COLS 

 

 EXPORT_TYPE 

 

 VALIDATOR 

 PROCESS 

 

 MEDIA_TYPE 

 

 TEMP_LOC 

 MEDIA_LOC 

 
Sub-Identifiers 

There are definitions for several sub-identifiers that are used to name elements for 
customization values that are conceptually regarded as objects. 
 
The sub-identifiers are: 
 

 IFORM 

 DFORM 

 SFORM 

 TFORM 

 AFORM 

 FFORM 

 RFORM 

 

 NAV 

 RPT 

 

 A_ID 

 A_HREF 

 A_TEXT 

 

 TABLE_NAME 

 COL_NAME 

 JOIN_TABLE 

 JOIN_COL 

 

 LOC_ANY 

 LOC_TEXT 

 LOC_IMAGE 

 LOC_VIDEO 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 31 
http://www.synapp2.org 2010-10-23 

 

 

 

 

 

 

Attribute Value Identifiers 

There are definitions for several identifiers that are used to enumerate values for customization 
of specific attributes. 
 
The attribute value identifiers for various on/off customization elements are: 
 

 SWITCH_ON 

 SWITCH_OFF 

 

The attribute value identifiers for COL_ALIGN are: 

 
 ALIGN_L 

 ALIGN_J 

 ALIGN_C 

 ALIGN_R 

 

The attribute value identifiers for COL_EDITOR are: 

 
 EDITOR_INPUT 

 EDITOR_TEXTAREA 

 

The attribute value identifiers for PDF report (RPT) customization elements are: 

 
 PAGE_ORIENTATION_PORTRAIT 

 PAGE_ORIENTATION_LANDSCAPE 

 

 PAGE_SIZE_LETTER 

 PAGE_SIZE_LEGAL 

 PAGE_SIZE_A3 

 PAGE_SIZE_A4 

 PAGE_SIZE_A5 

 

 FONT_FAMILY_ARIAL 

 FONT_FAMILY_COURIER 

 FONT_FAMILY_HELVETICA 

 FONT_FAMILY_TIMES 

 

The attribute value identifiers for MEDIA_TYPE are: 

 
 TYPE_ANY 

 TYPE_TEXT 

 TYPE_VIDEO 

 TYPE_IMAGE 

 

The attribute value identifiers for EXPORT_TYPE are: 

 
 EXPORT_TYPE_TXT_TAB 

 EXPORT_TYPE_TXT_CSV 

 EXPORT_TYPE_ODS 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 32 
http://www.synapp2.org 2010-10-23 

 

Context Identifiers 

There are definitions for several context identifiers that are used to map custom functions into 
the program flow of the SynApp2 request/response cycle. 
 
The context identifiers for validation and process functions are: 
 

 VALIDATOR_PRIMARY 

 VALIDATOR_SECONDARY 

 

 PROCESS_MAIN 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 33 
http://www.synapp2.org 2010-10-23 

Identifier Reference 

Note that the syntax of SQL statements or fragments in the examples may differ slightly from 
the syntax you might actually use, depending upon the database engine. 
 
APPID 

Purpose: Serves as a kind of namespace by defining a scope, within which, 

all customizations for a given application appear 

Synopsis: $this->m_data[APPID][<appid>] <key expression> = value 

Example: $this->m_data[APPID]['app'][QID]['table1'][ORDER] =  

 'table1.column1'; 

Discussion: The APPID identifier is always used in conjunction with other 

identifiers and appears in all of customization expressions 

covered by the Identifier Reference section. 

 

Typically, the value associated with APPID is synonymous with a 

database name. 

 

QID 

Purpose: Refine the scope of customizations within the context of the 

application APPID and support grouping according to purpose 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>] <key expression> =  

<value>; 

Example: $this->m_data[APPID]['app'][QID]['table1'][ORDER] =  

 'table1.column1'; 

Discussion: The QID identifier is always used in conjunction with other 

identifiers and appears in most of customization expressions 

covered by the Identifier Reference section. 

 

Typically, the value associated with QID is synonymous with a 

table name. 

 

AUTH_APPID 

Purpose: Restrict an entire SynApp2 application to a specific set of users 

Synopsis: $this->m_data[APPID][<appid>][AUTH_APPID] = <usernames CSV>; 

Example: this->m_data[APPID]['payroll'][AUTH_APPID] = 'dick, jane'; 

Discussion: none 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 34 
http://www.synapp2.org 2010-10-23 

AUTH_QID 

Purpose: Restrict use of a QID to a specific set of users 

Synopsis: $this->m_data[APPID][<appid>][AUTH_QID][<qid>] = <usernames CSV>; 

Example: this->m_data[APPID]['payroll'][AUTH_QID]['table1'] =  

 'dick, jane'; 

Discussion: This provides an extra layer of safety, by preventing 

unauthorized query invocation regardless of how a request 

originates. 

 

AUTH_PID 

Purpose: Restrict use of any SynApp2 page to a specific set of users 

Synopsis: $this->m_data[APPID][<appid>][AUTH_PID][<pid>] = <usernames CSV>; 

Example: $this->m_data[APPID]['projtrack'][AUTH_PID]['process'] =  

 'dick, jane'; 

Discussion: Also, combine [AUTH_PID] with [INCL][NAV], to add navigation 

tabs, and then selectively authorize [i.e. display] those tabs 

only for the listed usernames. 

 

AUTH_RID 

Purpose: Restrict use of any SynApp2 report to a specific set of users 

Synopsis: $this->m_data[APPID][<appid>][AUTH_RID][<rid>] = <usernames CSV>; 

Example: $this->m_data[APPID]['projtrack'][AUTH_RID]['activity'] =  

 'tom, dick, harry'; 

Discussion: Also, combine [AUTH_RID] with [INCL][RPT], to add report tabs, 

and then selectively authorize [i.e. display] those tabs only for 

the listed usernames. 

 

AUTH_RECS 

Purpose: Restrict a QID to a subset of records based on situation 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][AUTH_RECS] =  

<function name>; 

Example: $this->m_data[APPID]['payroll'][QID]['pay'][AUTH_RECS] =  

"restrict_to_paymaster_or_manager_direct_reports"; 

Discussion: The entry provides the name of a function that returns an empty 

string or an SQL term that will precisely define which records 

may be accessed by the active QID. 

 

Consider the following pseudo-code: 

 

function restrict_to_paymaster_or_manager_direct_reports() 

{ 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 35 
http://www.synapp2.org 2010-10-23 

    $auth_recs_expr = ''; 

 

    // if the logged in user IS NOT the paymaster  

    //     get the manager id, if any, for the login_username() 

    //     $auth_recs_expr = "employee.id_current_manager =  

                              '$logged_in_mgr_id'"; 

 

    return $auth_recs_expr; 

} 

 

To prevent selection of records, you must return a valid 

expression. In a case where, for the above example, the logged in 

user is not found to be a manager, then return an expression that 

cannot be satisfied, e.g. employee.id_current_manager = '', when 

incorporated into the WHERE clause of the controlling SQL 

statement generated by the SynApp2 framework. 

 

 

AUTH_ADD, 

AUTH_EDIT, 

AUTH_DELETE 

Purpose: Restrict database record manipulation to a specific set of users 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][AUTH_RECS] =  

<filter expression>; 

Example: $this->m_data[APPID]['projtrack'][QID]['worker'][AUTH_ADD] =  

 $admin_users; 

 

$this->m_data[APPID]['projtrack'][QID]['worker'][AUTH_EDIT] =  

 'dick, jane'; 

 

$this->m_data[APPID]['projtrack'][QID]['worker'][AUTH_DELETE] =  

 'dick, jane'; 

Discussion: These settings will (also) result in the automatically hiding or 

showing of corresponding action icons in the GUI of your SynApp2 

generated application, depending on username. 

 

AUTH_PROCESS 

Purpose: Restrict use of any SynApp2 process function to a specific set of 

users 

Synopsis: $this->m_data[APPID][<appid>][AUTH_PROCESS] 

[<function>] = <usernames CSV>; 

Example: $this->m_data[APPID][payroll][AUTH_PROCESS] 

['payroll_end_of_month’] = 'dick, jane'; 

Discussion: This provides an extra layer of safety, by preventing 

unauthorized function invocation regardless of how a process 

related request originates. 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 36 
http://www.synapp2.org 2010-10-23 

DATABASE 

Purpose: Allow an application to use a database where the database name 

differs from the value of the application APPID 

Synopsis: this->m_data[APPID][<appid>][DATABASE] = <database name>; 

Example: $this->m_data[APPID]['app'][DATABASE] = 'foo'; 

Discussion: none 

 

TABLE 

Purpose: Support reference to a basis table where the table name differs 

from the QID value. 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][TABLE] = <table name>; 

Example: $this->m_data[APPID]['app'][QID]['table1'][TABLE] = 'blah'; 

Discussion: Mapping a QID value to a table name is most often used to 

establish of a new data view, upon which generated pages and 

reports and their associated customization can be based. 

 

An explicit mapping of QID value to table name may be called a 

secondary QueryID. A primary (or natural) QueryID mapping for 

every table is assumed – i.e. QID value equals table name. 

 

This element is typically manipulated via the SynApp2 Tools - 

QueryID page and stored in the synapp2.inc.php file for the 

generated application. 

 

KEYMAP 

Purpose: Provide an alternative to the <database>._keymap_ table that that 

normally supports the SynApp2 keymap mechanism 

Synopsis: $this->m_data[DATABASE][<database name>][KEYMAP][] = <value>; 

Example: $this->m_data[DATABASE]['sample'][KEYMAP][] =  

 array(TABLE_NAME=>'table1',  

       COL_NAME=>'table2_fk',  

       JOIN_TABLE=>'table2',  

       JOIN_COL=>'pk_column'); 

Discussion: This particular customization keys off of a DATABASE name rather 

than APPID value. The sub-identifiers TABLE_NAME, COL_NAME, 

JOIN_TABLE and JOIN_COL are used to name the array elements. 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 37 
http://www.synapp2.org 2010-10-23 

ORDER 

Purpose: Change the default sort order for a specific QID 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][ORDER] =  

<SQL sort order expression>; 

Example: $this->m_data[APPID]['app'][QID]['table1'][ORDER] =  

'table1.column1'; 

Discussion: The default sort order is ascending by primary key (PK) value. 

 

This element is typically manipulated via the SynApp2 Options - 

Order page and stored in the synapp2.inc.php file for the 

generated application. 

 

MACRO 

Purpose: Override the default expansion behavior for a specific foreign 

key (FK) column 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][MACRO][<key column>] =  

<column expression>; 

Example: $this->m_data[APPID]['app'][QID]['t1'][MACRO]['t1.id_t2'] =  

 "concat(t2.lastName, ', ', t2.firstName)"; 

Discussion: By default, the SynApp2 SQL generator will expand foreign key 

(FK) columns to be the value of the first non-key field/column of 

the referenced record. The column expression will apply wherever 

the FK column would naturally appear. The expression will also 

apply to a corresponding drop-down list unless overridden by a 

LIST_MACRO. See below. 

 

This element is typically manipulated via the SynApp2 Options 

Macro page and stored in the synapp2.inc.php file for the 

generated application. 

 

LIST_MACRO 

Purpose: Override the default expansion behavior for a specific foreign 

key (FK) column used for drop-down lists 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][LIST_MACRO] 

[<key column>] = <column expression>; 

Example: $this->m_data[APPID]['app'][QID]['t1'][LIST_MACRO]['t1.id_t2'] =  

 "concat(t2.firstName, ' ', t2.lastName)"; 

Discussion: By default, the SynApp2 SQL generator will expand foreign key 

(FK) columns to be the value of the first non-key field/column of 

the referenced record. 

 

This element is typically manipulated via the SynApp2 Options 

List Macro page and stored in the synapp2.inc.php file for the 

generated application. 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 38 
http://www.synapp2.org 2010-10-23 

LIST_MACRO_ORDER 

Purpose: Override the default sort order of drop-down list 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][LIST_MACRO_ORDER] =  

<sort order expression>; 

Example: $this->m_data[APPID]['app'][QID]['table1'][LIST_MACRO_ORDER] =  

 'table2.column2'; 

Discussion: This element is typically manipulated via the SynApp2 Options 

List Macro Order page and stored in the synapp2.inc.php file for 

the generated application. 

 

LIST_MACRO_FILTER 

Purpose: Limit the drop-down list elements 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][LIST_MACRO_FILTER] =  

<filter expression>; 

Example: $this->m_data[APPID]['app'][QID]['employee'][LIST_MACRO_FILTER] =  

 "dept.name = 'Engineering' or dept.name = 'Test'"; 

Discussion: none 

 

EXTRA 

Purpose: Define a supplemental column expression 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][EXTRA] 

[<basis column>][<column alias>] = <column expression>; 

Example: $this->m_data[APPID]['app'][QID]['table1'][EXTRA] 

['table1.id_table2']['amount'] =  

 "table2.qty * table2.price"; 

Discussion: The column expression may contain references to any (qualified) 

table.column names that can logically be joined to the QID 

(basis) table. The SynApp2 SQL generator will automatically 

produce any (left) join clauses needed to satisfy the expression. 

 

The column expression may be a sub-query. Be sure to surround the 

expression with parentheses, e.g. "(select count(*) from 

line_item where line_item.id_invoice = id)" 

 

This element is typically manipulated via the SynApp2 Options - 

Extra page and stored in the synapp2.inc.php file for the 

generated application. 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 39 
http://www.synapp2.org 2010-10-23 

OMIT 

Purpose: Suppress nav tab(s) or report sub-tab(s) 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][OMIT] 

[<tab identifier] = <tabs CSV>; 

Example: $this->m_data[APPID]['app'][OMIT] 

[NAV] =  

 'honor_title, order_mode, orders'; 

 

$this->m_data[APPID]['app'][OMIT] 

[RPT] =  

 'genre'; 

Discussion: This identifier is not used to suppress form column(s), as of 

SynApp2 version 0.1.4 and later. Use COL_OMIT. 

 

INCL 

Purpose: Generate supplemental nav tab(s) or report sub-tab(s) 

Synopsis: $this->m_data[APPID][<appid>][INCL][NAV] = <elements CSV>; 

 

$this->m_data[APPID][<appid>][INCL][RPT] = <elements CSV>; 

 

$this->m_data[APPID][<appid>][INCL][NAV][] =  

 array(A_HREF => <filename>, A_TEXT => <tab text>); 

Example: $this->m_data[APPID]['app'][INCL][NAV] = 'month_end_processing'; 

 

$this->m_data[APPID]['app'][INCL][RPT] =  

 'sales summary, accounts receivable detail'; 

Discussion: The value of a [NAV] element implies that a page named 

<element>.htm will be opened via the nav tab. If the visible nav 

tab name is to differ from the page filename, then the value may 

be expressed as an array(e.g. $this->m_data[APPID]['synapp2'] 

[INCL][NAV][] =  array(A_HREF=>'pagegen', A_TEXT=>'PageGen');) 

 

The value of A_HREF implies that a page named <filename>.htm will 

be opened via the nav tab. The sub-identifiers A_HREF and A_TEXT 

are used to name the value array elements. Note the empty [] 

square brackets. 

 

The value of a [RPT] element implies that a page named 

<element>.report.htm will be opened via the report sub-tab. 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 40 
http://www.synapp2.org 2010-10-23 

TAB_ORDER 

Purpose: Control sequence of page navigation tab(s) or report sub-tab(s) 

Synopsis: $this->m_data[APPID][<appid>][TAB_ORDER][NAV] = <elements CSV>; 

 

$this->m_data[APPID][<appid>][TAB_ORDER][RPT] = <elements CSV>; 

Example: $this->m_data[APPID]['app'][TAB_ORDER][NAV] =  

 ' tab_c, tab_a'; // tab_c, tab_a, tab_b, tab_d, ..., tab_N 

Discussion: List tab/page names, from left to right, in the sequence you want 

them to appear. You do not have to list all of the tabs for the 

application. Any unspecified tab(s) will appear after the 

explicitly named ones. Use page name values as described for the 

identifier INCL above. 

 

QUERY 

Purpose: Override the SynApp2 query generator and/or map a complete SQL 

statement to a specific QID 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][QUERY] =  

<SQL statement>; 

Example: $this->m_data[APPID]['app'][QID]['table1'][QUERY] =  

'select * from table1 where column1 > 0'; 

Discussion: none 

 

SUB_QUERY DEPRECATED 

Purpose: Add a column that is the result of a sub-query 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][SUBQUERY] 

[<column name>] = <(SQL statement)>; 

Example: $this->m_data[APPID]['app'][QID]['customer'][SUBQUERY] 

['orders_placed'] =  

 '(select count(*) from orders where orders.id_customer =  

   customer.id)'; 

Discussion: Note the parentheses surrounding the <(SQL statement)> The 

parentheses are required. The <column name> becomes the column 

alias in the resulting query expression constructed by the 

SynApp2 SQL generator. 

 

FETCH 

Purpose: Retrieve a column value in response to the onChange event of an 

iform <select> (drop-down list) element, or registered lookup on 

a pending ACTION_INSERT, and/or on (JavaScript – synapp2.js) 

calls to do_lookup() or do_stat() 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][FETCH] 

[<column name>] = <column expression>; 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 41 
http://www.synapp2.org 2010-10-23 

Example: $this->m_data[APPID]['app'][QID]['item'][FETCH] 

['subtotal'] = 'format(sum(item.qty * items.price), 2)'; 

Discussion: This mechanism triggers and processes a request/response cycle 

that is useful for reflecting a column value that depends on 

a/the value(s) of a newly selected record. 

 

TITLE 

Purpose: Provide an alternative title for a report 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][<form identifier>] 

[TITLE] = <report title>; 

Example: $this->m_data[APPID]['app'][QID]['item'][RFORM] 

[TITLE] = 'Sales Detail Report'; 

Discussion: This attribute is only meaningful for RFORM (Report Form, i.e. 

PDF report) 

This element is typically manipulated via the SynApp2 Options - 

Reporting page and stored in the synapp2.inc.php file for the 

generated application. 

 

LEGEND 

Purpose: RESERVED 

Synopsis:  

Example:  

Discussion:  

 

LIMIT_ROWS 

Purpose: Override the default number of rows in a TFORM (select) form 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][TFORM][LIMIT_ROWS] =  

<rows> 

Example: $this->m_data[APPID]['app'][QID]['item'][TFORM][LIMIT_ROWS] =  

 '100'; 

Discussion: This attribute is only meaningful for TFORM. The value is applied 

to all SynApp2 generated pages where a TFORM appears for the 

associated QID. The default value for LIMIT_ROWS is 5. 

 

This attribute is typically manipulated via the SynApp2 Options 

Display page and stored in the synapp2.inc.php file for the 

generated application. 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 42 
http://www.synapp2.org 2010-10-23 

COL_OMIT 

Purpose: Suppress a form column 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][<form identifier>] 

[<column name>][COL_OMIT] = <flag>; 

Example: $this->m_data[APPID]['app'][QID]['emp'][SFORM] 

['pwd'][COL_OMIT] = 

 '1'; // true 

Discussion: Use this attribute to reduce clutter on forms. SFORM and DFORM 

often benefit from having fewer columns. 

 

This attribute is typically manipulated via the SynApp2 Options 

Display page and stored in the synapp2.inc.php file for the 

generated application. 

 

COL_SIZE 

Purpose: Control column width on forms and reports 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][<form identifier>] 

[<column name>][COL_SIZE] = <width>; 

Example: $this->m_data[APPID]['app'][QID]['emp'][SFORM] 

['pwd'][COL_SIZE] = 

 '20'; 

Discussion: The width units are not strictly defined and the effect can vary 

depending on the rendering client. The visible width roughly 

corresponds to 'number of characters' but you may have to adjust 

the value to get the result you’re looking for. 

 

When width is applied to TFORM columns, implemented with HTML 

table elements, the [CSS] style attribute for 'white-space' is 

forced to a value of 'normal'. This allows word-wrapping to occur 

within cells. 

 

This attribute is typically manipulated via the SynApp2 Options 

Display page and stored in the synapp2.inc.php file for the 

generated application. 

 

COL_ALIGN 

Purpose: Control column alignment on forms and reports 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][<form identifier>] 

[<column name>][COL_ALIGN] = <alignment>; 

Example: $this->m_data[APPID]['app'][QID]['item'][RFORM]['amount'] 

[COL_ALIGN] = 

 ALIGN_R; 

Discussion: This attribute is only meaningful for TFORM (Select Form) and 

RFORM (Report Form, i.e. PDF report) columns. 

 

The <alignment> attribute value identifiers are ALIGN_L, ALIGN_J, 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 43 
http://www.synapp2.org 2010-10-23 

ALIGN_C, and ALIGN_R. 

 

This attribute is typically manipulated via the SynApp2 Options 

Display page and stored in the synapp2.inc.php file for the 

generated application. 

 

COL_FORMAT 

Purpose: Control appearance of column data on reports 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][<form identifier>] 

[<column name>][COL_FORMAT] = <function[,format]>; 

Example: $this->m_data[APPID]['app'][QID]['item'][RFORM]['each'] 
[COL_FORMAT] = 
 'sprintf, $%.2f'; // currency dollars.cents 
$this-

>m_data[APPID]['app'][QID]['invoice'][RFORM]['invoice_date'] 
[COL_FORMAT] = 
 'col_format_date, d M Y'; // e.g. 01 Jan 2009 
$this-

>m_data[APPID]['app'][QID]['invoice'][RFORM]['invoice_date'] 
[COL_FORMAT] = 
 'col_format_date, d/m/y'; // e.g. 01/01/09 

Discussion: This attribute is only meaningful for RFORM (Report Form, i.e. 

PDF report) columns. 

 

Any PHP function may be invoked directly by this mechanism as 

long as the function signature follows either of these calling 

conventions: <function>(<value>) or function(<format>, <value>). 

 

To invoke a function with a different signature, create a 

'wrapper' function to transform the arguments. Specify the name 

of wrapper function as the value of the COL_FORMAT attribute. 

 

Formatting functions should return a string. 
 
SynApp2 provides the following pre-defined wrapper: 

 
function col_format_date($fmt, $value) 

{ 

 return date_format(date_create($value), $fmt); 

} 

 
See: http://www.php.net/manual/en/function.date.php for 
information about formatting date values. 

 

See: http://www.php.net/manual/en/function.sprintf.php for 
information about formatting other values. 

 

This attribute is typically manipulated via the SynApp2 Options 

Display page and stored in the synapp2.inc.php file for the 

generated application. 

 

  

http://www.php.net/manual/en/function.date.php
http://www.php.net/manual/en/function.sprintf.php


© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 44 
http://www.synapp2.org 2010-10-23 

COL_EDITOR 

Purpose: Control the method used to enter column values 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][<form identifier>] 

[<column name>][COL_EDITOR] = <editor>; 

Example: $this->m_data[APPID]['app'][QID]['customer_orders'][IFORM] 

['special_instructions'][COL_EDITOR] = EDITOR_TEXTAREA; 

$this->m_data[APPID]['app'][QID]['item'][IFORM] 

['description'][COL_EDITOR] = EDITOR_INPUT; 

Discussion: This attribute is only meaningful for IFORM (Input Form) columns. 

EDITOR_INPUT is the default editor for column values unless their 

length exceeds 40 or their data type is 'text' (i.e. text-blob). 

 

The <editor> attribute value identifiers are EDITOR_INPUT and 

EDITOR_TEXTAREA. 

 

This attribute is typically manipulated via the SynApp2 Options 

Display page and stored in the synapp2.inc.php file for the 

generated application. 

 

COL_EDITOR_ROWS 

Purpose: Control the number of rows for EDITOR_TEXTAREA 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][<form identifier>] 

[<column name>][COL_EDITOR_ROWS] = <rows>; 

Example: $this->m_data[APPID]['app'][QID]['customer_orders'][IFORM] 

['special_instructions'][COL_EDITOR_ROWS] = '10'; 

Discussion: This attribute is only meaningful for IFORM (Input Form) columns 

and when EDITOR_TEXTAREA is the COL_EDITOR. 

 

This attribute is typically manipulated via the SynApp2 Options 

Display page and stored in the synapp2.inc.php file for the 

generated application. 

 

COL_ATTRS 

Purpose: RESERVED 

Synopsis:  

Example:  

Discussion:  

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 45 
http://www.synapp2.org 2010-10-23 

COL_ORDER 

Purpose: Control column output sequence of a query result 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][<form identifier>] 

[COL_ORDER] = <column names CSV>; 

Example: $this->m_data[APPID]['app'][QID]['item'][RFORM] 

[COL_ORDER] = 

 'col_c, col_a'; // col_c, col_a, col_b, col_d, ..., col_N 

Discussion: This element is only meaningful for RFORM (Report Form, i.e. PDF 

report) columns. List column names, from left to right, in the 

sequence you want them to appear. 

 

You do not have to list all columns from the data set. Any 

unspecified column(s) will be output after the explicitly named 

ones, in the same sequence as they appear in the query result. 

 

This element is typically manipulated via the SynApp2 Options 

Col Order page and stored in the synapp2.inc.php file for the 

generated application. 

 

RPT_PAGE_SIZE 

Purpose: Control page dimensions for reports 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][RPT_PAGE_SIZE] =  

<page size>; 

Example: $this->m_data[APPID]['app'][QID]['item'][RPT_PAGE_SIZE] =  

 PAGE_SIZE_LETTER; 

Discussion: The <page size> attribute value identifiers are PAGE_SIZE_LETTER, 

PAGE_SIZE_LEGAL, PAGE_SIZE_A3, PAGE_SIZE_A4 and PAGE_SIZE_A5. 

 

This attribute is typically manipulated via the SynApp2 Options 

Reporting page and stored in the synapp2.inc.php file for the 

generated application. 

 

RPT_PAGE_ORIENTATION 

Purpose: Control page orientation for reports 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][RPT_PAGE_ORIENTATION] =  

<page orientation>; 

Example: $this->m_data[APPID]['app'][QID]['item'][RPT_PAGE_ORIENTATION] =  

 PAGE_ORIENTATION_LANDSCAPE; 

Discussion: The <page orientation> attribute value identifiers are 

PAGE_ORIENTATION_PORTRAIT and PAGE_ORIENTATION_LANDSCAPE. 

 

This attribute is typically manipulated via the SynApp2 Options 

Reporting page and stored in the synapp2.inc.php file for the 

generated application. 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 46 
http://www.synapp2.org 2010-10-23 

RPT_FONT_SIZE 

Purpose: Control point size of font for reports 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][RPT_FONT_SIZE] =  

<point size>; 

Example: $this->m_data[APPID]['app'][QID]['item'][RPT_FONT_SIZE] =  

 '12'; 

Discussion: The default value for <point size> is 8. 

 

This attribute is typically manipulated via the SynApp2 Options 

Reporting page and stored in the synapp2.inc.php file for the 

generated application. 

 

RPT_FONT_FAMILY 

Purpose: Control typeface for reports 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][RPT_FONT_FAMILY] =  

<typeface>; 

Example: $this->m_data[APPID]['app'][QID]['item'][RPT_FONT_FAMILY] =  

 FONT_FAMILY_COURIER; 

Discussion: The <typeface> attribute value identifiers are FONT_FAMILY_ARIAL, 

FONT_FAMILY_COURIER, FONT_FAMILY_HELVETICA and FONT_FAMILY_TIMES. 

 

This attribute is typically manipulated via the SynApp2 Options 

Reporting page and stored in the synapp2.inc.php file for the 

generated application. 

 

RPT_CELL_BORDER 

Purpose: Control surrounding outline of data cells for reports 

Synopsis: $this->m_data[APPID][RPT_CELL_BORDER] = <flag>; 

Example: this->m_data[APPID]['app'][RPT_CELL_BORDER] = SWITCH_ON; 

Discussion: This attribute affects all RFORM (Report Form, i.e. PDF report) 

output for the generated application. The default value is: 

SWITCH_OFF. 

 

This attribute is typically manipulated via the SynApp2 Options 

Reporting page and stored in the synapp2.inc.php file for the 

generated application. 

 

RPT_ROW_SHADE 

Purpose: Control alternating background highlight of report rows 

Synopsis: $this->m_data[APPID][RPT_ROW_SHADE] = <flag>; 

Example: $this->m_data[APPID]['app'][RPT_ROW_SHADE] = SWITCH_OFF; 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 47 
http://www.synapp2.org 2010-10-23 

Discussion: This attribute affects all RFORM (Report Form, i.e. PDF report) 

output for the generated application. If RPT_ROW_SHADE and 

DETAIL_SUMMARY_COLS are both active for a report, row shading 

occurs only for summary rows. The default value is: SWITCH_ON. 

 

This attribute is typically manipulated via the SynApp2 Options 

Reporting page and stored in the synapp2.inc.php file for the 

generated application. 

 

RPT_ROW_SIZE 

Purpose: Force a uniform row height for PDF reports [with images] 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][RPT_ROW_SIZE] =  

<point size>; 

Example: $this->m_data[APPID]['app'][QID]['item'][RPT_ROW_SIZE] =  

 '12'; // em 

Discussion: The size units are not strictly defined and the effect can vary 

depending on report font size. The row height value roughly 

corresponds to 'a multiple of character height'. Adjust the value 

based upon evaluation of actual report output. Choose a value 

that produces the best compromise between number of report rows 

per page and image size. 

 

This element is intended for use when a query result column has 

been customized with a MEDIA_TYPE of TYPE_IMAGE. Images are 

automatically scaled to fit, while maintaining the original 

aspect ratio. The best results are typically achieved with images 

that have square proportions, and have been pre-processed for 

minimum file size, with native dimensions reasonably close to the 

final output size. 

 

DETAIL_SUMMARY_COLS 

Purpose: Add an aggregation row for specific column of a report 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>] 

[DETAIL_SUMMARY_COLS][] =  

<column name>, <group_by_col_name>[, <suppress left N cols>]; 

Example: $this->m_data[APPID]['app'][QID]['item'] 

[DETAIL_SUMMARY_COLS][] =  

'discount, invoice_number, 3'; // invoice_number, date, cust 

 

$this->m_data[APPID]['app'][QID]['item'] 

[DETAIL_SUMMARY_COLS][] = 'amount, invoice_number'; 

Discussion: For each record group, statistics are computed for: count, sum, 

ave, min and max. An output row is added, after each record 

group, to reflect the value of the sum statistic for the 

specified column name. A grand total row is added, to the end of 

the report, to reflect the value of the sum statistic for the 

specified column name. Data columns, whose values repeat for 

every row of a group, can be suppressed. Specify the actual 

number of columns to suppress. The ORDER specified for the QID of 

any report, that employs the DETAIL_SUMMARY_COLS mechanism, 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 48 
http://www.synapp2.org 2010-10-23 

should rely on an expression that depends strongly upon the 

'group_by_col_name'. Important: Note the empty square braces [] 

that are part of the key expression. Do not fail to include them. 

 

This element is typically manipulated via the SynApp2 Options 

Detail Summary Cols page and stored in the synapp2.inc.php file 

for the generated application. 

 

EXPORT_TYPE 

Purpose: Register the report data export formatting preference 

Synopsis: $this->m_data[APPID][<appid>][EXPORT_TYPE] =  

[<export type>]; // app-level 

 

$this->m_data[APPID][<appid>][QID][<qid>][EXPORT_TYPE] =  

<export type>; // qid-specific 

Example: $this->m_data[APPID]['app'][EXPORT_TYPE] =  

EXPORT_TYPE_ODS; 

Discussion: There are two forms for this customization element. The <export 

type> attribute value identifiers are EXPORT_TYPE_TXT_TAB, 

EXPORT_TYPE_CSV and EXPORT_TYPE_ODS. 

 

The default format is EXPORT_TYPE_TXT_TAB - Text (Tab-delimited) 

and is readily imported by most electronic spreadsheet programs. 

Implementation of EXPORT_TYPE_TXT_CSV - Text (Comma-separated 

values) is pending, as of SynApp2 version 1.8.0beta_3. 

EXPORT_TYPE_ODS - OpenDocument Spreadsheet supports imbedded 

images, but can only be read by ODS capable programs. 

 

VALIDATOR 

Purpose: Register a column value validation function name for a specific 

QID and validation context key 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][VALIDATOR] 

[<context key>] = <function name>; 

Example: include ('my_functions.php'); 

 

$this->m_data[APPID]['app'][QID]['reservation'][VALIDATOR] 

[VALIDATOR_SECONDARY] = 'validate_checkout_date'; 

Discussion: The return value of a validation function is a string. 

 

An empty return string indicates successful validation. Indicate 

validation failure with the exact message text you want to appear 

in the iform feedback label element bound to the col_var. 

 

Look at _shared_/validate.php to see how the validation context 

key applies and how the return value of your function(s) affects 

program flow. 

 

The validation <context key> may be VALIDATOR_PRIMARY or 

VALIDATOR_SECONDARY. 

 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 49 
http://www.synapp2.org 2010-10-23 

Be aware that any function mapped with the VALIDATOR_PRIMARY 

<context key> will override (i.e. replace) the automatic 

intrinsic primary validation of the named col_var. 

 

Be sure to define your functions with the correct parameters for 

the <context key> you use to map them. 

 

The form of a custom primary validation function is: 

 

function <function_name>( 

 $col_name, 

 $col_var, 

 $display_name, 

 &$col_vars) 

{ 

 $status_msg = ''; 

 

 if ($col_var <test expression>) 

 { 

  $status_msg = "{$display_name} failed validation."; 

 } 

 

 return $status_msg; 

} 

 

The form of a custom secondary validation function is: 

 

function <function_name>( 

 $col_name, 

 $col_var, 

 $display_name, 

 &$col_vars, 

 &$feedback) 

{ 

 $status_msg = ''; 

 

 $other_col_var_is_valid =  

     !is_set($feedback[<other_col_name>]) && 

     is_set($col_vars[<other_col_name>])) ? true : false ; 

 

 if ($other_col_var_is_valid &&  

     ($col_var <test expression> 

      $col_vars[<other_col_name>]['v'])) 

 { 

  $status_msg = "{$display_name} failed validation 

       against <other_col_name>."; 

 } 

 

 return $status_msg; 

} 

 

Parameters passed to your function(s) are: 

 

$col_name –- the name of the col_var subject being validated 

 

$col_var –- the posted value (or array of values) associated with 

the col_name 

 

$display_name – the computed display name for col_name 

 



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 50 
http://www.synapp2.org 2010-10-23 

$col_vars -- a reference to an array of col_vars posted with the 

action request 

 

$feedback – a reference to the output buffer array for validation 

failure messages (supplied only for context VALIDATOR_SECONDARY) 

 

Some parameters are passed by reference for the purpose of 

efficiency. They should be treated as constants by your 

functions. 

 

PROCESS 

Purpose: Register a function name for a specific QID and process context 

key 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][PROCESS] 

[<context key>] = <function name>; 

Example: include ('my_functions.php'); 

 

$this->m_data[APPID]['app'][QID]['month_end'][PROCESS] 

[PROCESS_MAIN] = 'month_end_processing'; 

Discussion: The return value of a processing function is bool. 

 

Look at _shared_/action.php to see how the process context key 

applies and how the return value of your function(s) affects 

program flow. 

 

The form of a custom processing function is: 

 

function <function_name>(&$args, &$action, &$adhoc_markup) 

{ 

 $adhoc_markup[] = "<h1>Hello World!</h1>"; 

 

 if (isset($args['name'])) 

 { 

  $value = $args['name']; 

  // code . . . 

 } 

 

 return true; // continue action 

} 

 

Parameters passed to your function(s) are: 

 

$args – a reference to an array of name, value pairs passed from 

your GUI via the action request mechanism 

 

$action -- a reference to the action object instance managing 

the request/response cycle 

 

$adhoc_markup -- a reference to an array (of lines) that will be 

returned to your browser and inserted directly as the innerHTML 

of your adhoc container element 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 51 
http://www.synapp2.org 2010-10-23 

MEDIA_TYPE 

Purpose: Register a media type for a query result column 

Synopsis: $this->m_data[APPID][<appid>][QID][<qid>][MEDIA_TYPE] 

[<column name>] = <media type>; 

Example: $this->m_data[APPID]['app'][QID]['item'][MEDIA_TYPE] 

['photo'] = TYPE_IMAGE; 

Discussion: The <media type> attribute value identifiers are TYPE_ANY, 

TYPE_TEXT, TYPE_VIDEO and TYPE_IMAGE. The designation affects 

handling of the column for during report generation and ties the 

column to the media location definition, if any, for that type. 

 

TEMP_LOC 

Purpose: Register an applications relative directory for temporary files 

Synopsis: $this->m_data[APPID][<appid>][TEMP_LOC] = 

<apps relative directory>; // app-level 

 

$this->m_data[APPID][<appid>][QID][<qid>][TEMP_LOC] = 

<apps relative directory>; // qid-specific 

Example: $this->m_data[APPID]['app'][TEMP_LOC] = 'app_tmp'; 

Discussion: There are two forms for this customization element. In the 

absence of customization, server-dependent default behavior 

applies. If the PHP function_exists('sys_get_temp_dir') and it 

returns a valid directory, then that value is used, otherwise the 

applications directory, parent of the generated application 

directory, is used. 

 

As of version 1.8.0beta_3, temporary files are only used to 

support EXPORT_TYPE_ODS. 

 

MEDIA_LOC 

Purpose: Register an applications relative directory for media files 

Synopsis: $this->m_data[APPID][<appid>][MEDIA_LOC] 

[<media type>] = <apps relative directory>; // app-level 

 

$this->m_data[APPID][<appid>][QID][<qid>][MEDIA_LOC] 

[<media type>] = <apps relative directory>; // qid-specific 

Example: $this->m_data[APPID]['app'][MEDIA_LOC] 

[TYPE_IMAGE] = 'app_img'; 

Discussion: There are two forms for this customization element. The <media 

type> attribute value identifiers are TYPE_ANY, TYPE_TEXT, 

TYPE_VIDEO and TYPE_IMAGE. This element is used when generated 

PDF reporting detects query result columns with MEDIA_TYPE 

customization. Media location can also be incorporated into EXTRA 

column expressions, used to produce thumbnail images (for Select 

Form presentation). 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 52 
http://www.synapp2.org 2010-10-23 

 

  



© 2010 Richard Howell. All rights reserved. SynApp2 Customization Page 53 
http://www.synapp2.org 2010-10-23 

Resources 

Reference Books 
 
JavaScript: The Definitive Guide, David Flanagan - http://oreilly.com/catalog/9780596101992 
 
Bulletproof Web Design, Dan Cederholm - http://simplebits.com/publications/bulletproof 
 
Links 
 
SynApp2 Documentation - http://www.synapp2.org/main/?page_id=6 
 
SynApp2 Support Forums - http://synapp2.org/forum 
 
PHP Manual (English) - http://www.php.net/manual/en 
 
MySQL 5.1 Reference Manual (English) - http://dev.mysql.com/doc/refman/5.1/en 
 
Oracle® Database SQL Reference - 
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm 
 
Oracle 10g Express Edition -  
http://www.oracle.com/technetwork/database/express-edition/overview/index.html 
 
phpMyAdmin - http://www.phpmyadmin.net 
 
Web Standards - http://www.w3.org/standards 
 
Markup Validation Service - http://validator.w3.org 
 
CSS Validation Service - http://jigsaw.w3.org/css-validator 
 
HTML Tutorial - http://www.w3schools.com/html 
 
CSS Tutorial - http://www.w3schools.com/css 
 
JavaScript Tutorial - http://www.w3schools.com/jsref 
 
PHP Tutorial - http://www.w3schools.com/php 
 
SQL Tutorial - http://www.w3schools.com/sql 
 

http://oreilly.com/catalog/9780596101992
http://simplebits.com/publications/bulletproof
http://www.synapp2.org/main/?page_id=6
http://synapp2.org/forum
http://www.php.net/manual/en
http://dev.mysql.com/doc/refman/5.1/en
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm
http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.phpmyadmin.net/
http://www.w3.org/standards
http://validator.w3.org/
http://jigsaw.w3.org/css-validator
http://www.w3schools.com/html
http://www.w3schools.com/css
http://www.w3schools.com/jsref
http://www.w3schools.com/php
http://www.w3schools.com/sql

	SynApp2 Customization
	Display Name
	COMMENT Mechanism
	Numeric Range Validation
	Form Field/Column Value Initialization
	Applying Default Values on Insert or Update
	Required Values
	TIMESTAMP Columns
	Include File Mechanism
	Implementing Customization
	Customization Effects
	Interactive Customization
	Custom Initialization Functions
	Custom Validation Functions
	Custom Processing Functions
	Custom Authorization and Record Filtering Functions
	Custom Application Username and Password Validation Functions
	Customizing Data Views
	Drag and Drop Functions
	Identifiers
	Sub-Identifiers
	Attribute Value Identifiers
	Context Identifiers
	Identifier Reference
	Resources


