

SynApp2.org

SynApp2 Concepts
Web Application Generator Reference

© 2010 Richard Howell. All rights reserved.
2010-04-10

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 2
http://www.synapp2.org 2010-04-10

SYNAPP2 CONCEPTS .. 3
Introduction .. 3
Overview... 3
Model - View - Controller (MVC) Architecture .. 4

Model .. 4
Relations .. 6

View .. 9
Interactive Page Flow .. 10

Navigation Paths... 10
Forms ... 12

Form Roles .. 14
Screen Image .. 17

Display Size and Page Layout ... 17
About Browsers ... 20

Controller .. 21
Exchange Cycle .. 21
Events .. 23

Page Load ... 23
Page Navigation and Report Tabs... 24
Search ... 26
Reset ... 27
Browse (Row/Record Navigation) .. 28
Select .. 29
Add ... 32
Edit ... 39
Delete ... 40
Close ... 42
Statistics ... 42

Templates ... 44
Reports ... 44
Custom Processes ... 46
Debug Message Window .. 47
Event Message Window ... 48
Hard Error Reporting .. 48
Installation and Deployment .. 49

Configuration .. 50
Authentication and Authorization .. 51

Synapp2 Method ... 51
Direct Method ... 53
App and Enterprise Methods ... 53

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 3
http://www.synapp2.org 2010-04-10

SynApp2 Concepts

The concepts presented below are intended for SynApp2 developers who need a deeper
understanding of how SynApp2 works, in order to apply customization or modify the source
code. Much of the terminology used in the descriptions appears within the SynApp2 source
code and in pages generated by the software.

Introduction

The SynApp2 - Web Application Generator framework and the applications created with it, rely
on popular, broadly supported technology. Every related component is available from both
commercial providers and as free and open source software.

Virtually all modern personal computers or workstations have web browser software installed.
That is all that is needed to access and use applications developed with SynApp2.

The framework and applications created with it can bet hosted on an individual workstation, a
server on a local area network, wide area network, or the Internet.

The web-based implementation model centralizes data and reduces issues related to
traditional application software distribution, licensing and maintenance costs, to virtually zero.

The interactive elements are implemented using strictly W3C standards-compliant Hypertext
Markup Language (HTML) and Cascading Style Sheets (CSS).

The programming logic is divided between bodies of code written in JavaScript and PHP.
Persistent data is managed by popular database engines such as MySQL and Oracle. All of
this, in turn, is supported by any of several web-server programs, including, but not limited to,
Apache HTTP Server and Microsoft Internet Information Services (IIS).

All of the industry standard technical knowledge and skills needed to create, support and
maintain SynApp2 generated applications is available from a huge pool of professionals. And,
because SynApp2 is open source software, you, your organization or company, can augment
the framework and applications if and as needed.

Overview

The SynApp2 approach to application development involves a series of small, simple solutions
that target specific elements of a larger problem. When all, or most, of the solutions are
applied, the result is an application program.

Breaking a larger problem into a series of smaller problems often has benefits. Allowing
automation to deal with much of the work frees your time and lets you focus on key issues.
The framework can provide support for more complex GUI or processing, and the means to
integrate those pieces into a complete application.
SynApp2 divides problem areas and neatly exposes opportunities to tie into an orchestrated
stream of events and responses. Some hooks are formally set out, while others are visible,

http://en.wikipedia.org/wiki/Free_and_open_source_software

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 4
http://www.synapp2.org 2010-04-10

ready and waiting for a reason to be brought into use. Because SynApp2 is open source
software, you can tie into whatever makes sense for your situation.

There are numerous areas of functionality that SynApp2 competently and efficiently
addresses. Daily, untold numbers of developers with all levels of experience, spend countless
hours of time and energy, trying to reinvent solutions for those same problems. Sadly, the
results of much of that effort are nowhere near as nice as the facilities SynApp2 provides.

SynApp2 is so lightweight and unobtrusive that you can combine it with other tools and
frameworks. As long as you’ve got PHP and a database (with numeric keys) accessible with
one of the supported engines, you can add SynApp2 to the mix. Use SynApp2 to create
complete applications, design prototypes, perform maintenance, or anything else you can think
of, and to get done what you need to get done.

The purpose of SynApp2 is to help you create and deploy useful applications quickly, with the
fewest number of details to deal with and remember, and that stand up over time with
minimum support burden.

Print a hardcopy, get out your highlighter pen, and carefully sift through this document. It’s
loaded with useful information that will help you learn about and harness SynApp2.

Model - View - Controller (MVC) Architecture

The elements of the SynApp2 framework are segregated into the three distinct domains of
model, view and controller. Discussions of this common architectural pattern for software
engineering abound. Here, we’ll focus on what the domains mean for SynApp2 generated
applications and to the usefulness of the framework in other contexts.

Model

The model is primarily based on the data upon which the generated application operates.
More precisely, model information is extracted from the database structure, as it is available
from a live instance of the database, and made available by way of a program interface that
defines useful operations in terms of meaningful conceptual abstractions.

Model information, beyond what is intrinsic to the database structure, may be augmented by
supplemental expressions. This augmentation happens through a process called
customization. The business logic of your application, beyond what is expressed by the
database design itself, is implemented with a series of SQL and/or PHP code snippets. You’ll
see examples as you read on.

The model domain is itself implemented as several layered components and is subjected to
influences from a number of sources, and produces specific outputs.

At the bottom of pile is the database extraction layer. This module, implemented in

shared/dbx.php, abstracts fundamental database operations and encapsulates the

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 5
http://www.synapp2.org 2010-04-10

implementation details needed to work with different SQL database engines. At the time of this
writing, MySQL and Oracle are supported.

[Aside: If anyone is willing and able to sponsor development for another engine, we’re ready to
go. Please contact richard@synapp2.org.]

Without going into too much detail, the database abstraction layer manages database
connection details, and retrieves, generalizes and publishes database structure information,
submits database queries (formulated elsewhere), and publishes generalized results in PHP
variables or associative arrays.

For nearly all purposes, code within the framework or from custom processing functions uses a

globally visible function – get_dbx() – to retrieve a reference to a reusable instance of a

database abstraction object. See _shared_/util.php.

Practical examples of six of the most useful methods of the database abstraction object:

$customer_count = get_dbx()->get_query_value('select count(*) from customer');

$customer_recs = get_dbx()->get_query_array('select lastname, firstname from

customer order by lastname, firstname');

function check_valid_date($d)

{

 $ymd = get_dbx()->parse_date_value($d); //MySQL [yyyy-mm-dd], Oracle [dd Mmm yy]

 return checkdate($ymd['m'], $ymd['d'], $ymd['y']);

}

$q_insert = get_dbx()->get_insert_id_query('id', "insert into schedule (identifier,

revision) values ('{$schedule_beg}', '{$revision}')");

get_dbx()->query($q_insert);

$id_schedule = get_dbx()->insert_id();

Notice the last three statements above. Such a sequence works on any of the supported
database engines. The program code necessary to retrieve the primary key value of an
inserted record is dramatically different for MySQL than it is for Oracle. The PHP code

sequence using dbx, particularly involving Oracle, is simpler. It’s portable too. If you ever have

to switch database engines, or deploy on several different severs, with different database
engines, you’re covered with a single code base.

The next layer up in the model domain is the schema object. This module, implemented in

shared/schema.php, provides an interface to the structure of the database in terms of

database, table and column names, column types, and sizes. Also, a graph of the data table
relations is maintained. Functions to navigate parent-child relationship hierarchy are available,
and are used to drive the generation of GUI elements and SQL statements.

http://en.wikipedia.org/wiki/Graph_theory

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 6
http://www.synapp2.org 2010-04-10

Relations

Any combination of three techniques may be used to declare how tables, or more specifically,
how the records within those tables relate. At the center of each declaration technique is the
notion and names of primary and foreign keys. We’re not going to discuss relational database
theory, or philosophy, here. There are other sources for that.

We need to touch on a couple of things before we go into declaring relations.

First, primary and foreign keys, as far as the SynApp2 MVC framework is concerned, are
numeric. We’ll acknowledge here and now, that for some, this is intolerable. But, for others,
especially where new projects are concerned, strictly numeric keys are not only practical; they
may prove to be positively liberating.

The column serving as the primary key should be specified in the SQL table definition.

Primary key values are established at the database level. MySQL often relies on its

AUTO_INCREMENT feature, whereas Oracle will need a sequence and trigger. However

you want to do it, when a record is inserted, a primary key value gets generated and assigned.

You’ll need to do something like the following (once) for each table (Oracle only):

create sequence "customer_SEQ";

create trigger "BI_customer" before insert on "customer"

 for each row

 begin

 select "customer_SEQ".nextval into :NEW.id from dual;

 end;

Relations are established by declaring that the row value in a particular column, a so called
foreign key (FK), corresponds to the primary key (PK) column value in a row of a parent table.
How you do this depends on what fits your situation.

You may of course, and probably should, declare foreign key constraints according to the
capabilities of your database engine. But, because of differences in how these details would be
retrieved from a given engine, no attempt is currently made by the framework to do this – at
least for now. Whether or not foreign key constraints are enforced by the database engine, The
SynApp2 framework tests and enforces foreign key integrity as records are inserted or deleted
with automatically generated query statements.

The easiest way to declare relations is with a column naming convention. SynApp2 recognizes

the column name 'id' to be the primary key column. The primary key is also detected, if one

has been specified in the table definition, but this is not an absolute requirement.

A naming convention allows a foreign key to be declared with the combination of a prefix and
the name of the table containing the record to which the foreign value refers. When the foreign

key prefix 'id_' is combined with a table name, a name like 'id_customer', is taken to

mean that the column value is a foreign key into the customer table. If the 'id_customer'

column is in a table named 'orders', it implies a one-to-many relationship between customer

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 7
http://www.synapp2.org 2010-04-10

and orders, i.e., one customer record may be associated with many orders records. Some
readers may find the term master-detail relationship to be more familiar.

The naming convention for primary key columns is: 'id'

The naming convention for foreign key columns is: 'id_<join_table_name>'

You can build relations into your application with entries in the custom.inc.php file:

$this->m_data[DATABASE]['sample'][KEYMAP][] =

 array(TABLE_NAME=>'orders',

 COL_NAME=>'customerID',

 JOIN_TABLE=>'customer',

 JOIN_COL=>'customerPK');

You can also use the SynApp2 KeyMap page to interactively specify relations.

Select a column with a click on the appropriate radio button and then choose the join table (or
delete) from the drop-down list. The display will immediately reflect the change.

Use SynApp2 KeyMap for non-conforming key column names

A system table with the reserved name _keymap_, will be created automatically in the

database you’re working with.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 8
http://www.synapp2.org 2010-04-10

The automatically generated SQL code needed to establish the mapping table varies,
depending on database engine, but the following pseudo-code conveys the concept:

CREATE TABLE _keymap_ (

 id int(10) unsigned NOT NULL auto_increment,

 table_name varchar(32) NOT NULL,

 col_name varchar(32) NOT NULL,

 join_table varchar(32) NOT NULL,

 join_col varchar(32) NOT NULL,

 PRIMARY KEY (id)

);

You must have table create privileges in order for this method to work. For MySQL and Oracle
the requirements are different. For MySQL, on a local server it is usually the synapp2 user, or
on a remote server the database admin-user, that must have the privileges. For Oracle, it is
the (directly logged in/owner) user of the schema that needs table create privileges.

Regardless of the method you choose to define relations, once they’re established, the
SynApp2 framework uses them to build SQL statements.

An SQL statement with key columns that conform to SynApp2 naming conventions:

select orders.id,

 orders.id_customer,

 concat(customer.last_name, ', ', customer.first_name) as orders_id_customer,

 orders.order_no,

 orders.order_addr1,

 orders.order_addr2,

 orders.order_city,

 orders.order_state,

 orders.order_zip,

 orders.order_date,

 orders.ship_date,

 orders.id_order_mode,

 order_mode.descr as orders_id_order_mode,

 from orders

 left join customer on customer.id = orders.id_customer

 left join order_mode on order_mode.id = orders.id_order_mode

 where orders.id_customer='1019'

 order by orders.id

);

Notice how the primary and foreign key column names appear in the join clauses, above.

The model-driven SynApp2 query generator is implemented in _shared_/query.php.

Column expressions can be added with MACRO, FETCH, EXTRA, and SUBQUERY customization

entries. See SynApp2 Customization. Any join clauses, needed to support the resulting query
are generated automatically. Read that last sentence again.

A two-stage data validation processor is implemented in _shared_/validate.php. And

although data validation is substantially carried out by the model, an illustrated discussion
appears later in this document. There’s an extensive technical discussion, with examples, that
can be found in the SynApp2 Customization document.

http://www.synapp2.org/documentation/SynApp2_Customization.pdf
http://www.synapp2.org/documentation/SynApp2_Customization.pdf

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 9
http://www.synapp2.org 2010-04-10

View

The view elements are implemented with HTML and CSS, particularly for SynApp2 generated
pages. These elements are managed by some JavaScript code that interfaces with, but is not
part of the controller domain – discussed later.

The term view, here, is taken to mean the GUI – the visible parts of the application – aside
from the data being acted upon. The GUI elements are comprised of panels, or forms, that
appear in different roles according to various states that occur in response to user interaction.
There are also page and report navigation tabs that provide access to various parts of the
application.

Other technology, such as Java, Flash, Silverlight, or even HTML 5, could be used on pages
created by means other than SynApp2, but still be supported by the rest of the SynApp2
framework. Further discussion of that subject is beyond the scope of this document.

SynApp2 can, and typically does, generate all view elements of an application. Put another
way, SynApp2 generates complete applications. Everything that is needed is produced at the
click of a button. Without any information, other than a database instance, SynApp2 will
automatically create an entire application, including PDF reporting and data export.

Details, such as which, or in what order, fields and columns appear on particular forms, and in
various roles, are designated by options or by customization. These import topics are
discussed later in this document. They’re also addressed by the SynApp2 Customization
document.

Markup templates are used for the page structure and style. But, as of this writing, certain
aspects of the generated elements are imposed. Conformance with certain assumptions and
conventions is needed, to make all the pieces work together. The code that emits all of the

generated GUI elements can be found in _shared_/markup.php.

While the framework supports dynamic GUI generation, all of the GUI forms that SynApp2
generates are static HTML. This means that you can use readily available markup editing tools
to stylize them. Do this as a final step, after the design of your database and application has
been proven.

Almost all of what SynApp2 generates is view related – GUI. Very little executable code is
emitted. SynApp2 generated executable code is limited to a few, simple, name vs. value
mapping statements. It is the generalized, application-independent executable code of the
underlying SynApp2 MVC framework that is reused, or shared, by every SynApp2 powered
application. There will be more on this later, but for those who are leery of code generators,
take comfort. Amazing things can be done with the SynApp2 MVC framework, beyond just
supporting automatically generated applications.

It is also worth mentioning that, not only are the implementation details of the GUI, but even
the notion of existence of a/the/any view, is completely independent and hidden from, the other
domains of the framework.

http://www.synapp2.org/documentation/SynApp2_Customization.pdf

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 10
http://www.synapp2.org 2010-04-10

Interactive Page Flow

In order for a web app to feel and act like a custom made, dedicated business application
program, there really should be some kind of logical flow and guidance for users. Contrast this
with the idea of a blank page in a word-processor or an empty spreadsheet.

SynApp2 processes details about your database structure and generates elements to support
interactive management of your application data in a logical, sensible way. In order to do this,
many aspects of relational database-backed applications have been abstracted and
generalized.

SynApp2 depends on your overall database structure, or schema, to reflect the business
problem you're trying to solve. SynApp2 strives to insure that the referential integrity of your
database is maintained. This ambition shapes how your application can and will work.

The pages SynApp2 generates each have as their focus, a so-called basis table. The typical
mission of a SynApp2 generated page is to support: create, read, update and delete (CRUD)
operations on the records in the basis table. Another, but somewhat less well known acronym
more completely describes the fundamental operations supported the scaffolding produced by
the application generator: browse, read, edit, add and delete (BREAD).

Navigation Paths

On any given page, SynApp2 will typically impose a flow of user interaction that begins in the
top left of the screen and flows toward the bottom, in a kind of column. On more complex
pages, there can be more than one column of interaction flowing toward the bottom of the
page. A SynApp2 page is laid out, more or less, as a grid.

These columns of interaction correspond to what SynApp2 calls paths. A path is an
abstraction, depicting a chain of parent-child relationships between [the records in] tables. The
number of paths to a table is equal to the number of foreign keys [it has] defined in its keymap.
A navigation path is a specialized derivation of the path concept as it applies to interactive
page flow.

As has been said elsewhere, the focus of a SynApp2 page is its basis table. The number
foreign keys defined for the basis table is a significant determinant of the number of navigation
paths needed for a given page. But, another major factor is whether or not you designate a tier
table for a second or subsequent path (foreign key) with PageGen.

If there is only one path (foreign key) for the basis table, the number of paths, and therefore
the number of navigation paths, will always be one.

When there are two or more navigation paths, the supporting forms will be situated in columns
flowing across the page to the right.

Paths, and therefore navigation paths, also have a depth. The depth of a path is fixed by the
chain of parent-child relationships. A navigation path can be, and often is, shorter than the full
hierarchy of relationships defined by the schema, depending upon designation of a tier table.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 11
http://www.synapp2.org 2010-04-10

The points in the interactive page flow that affect a given table along a particular path, or within
a column, can be thought of as nodes of interaction.

Typically, the first node of interaction on a page occurs with a Search Form at the top of the
leftmost column of forms and is on the primary path. The active node of interaction generally
moves down the page, until the basis table is reached, and you are manipulating records in the
basis table from events initiated by controls on the related Select Form.

Whenever there has been a tier table designated for the primary path, the records in any other
tables manipulated at nodes along that path are constrained to be children of the record
selected at the parent node. This includes manipulations of the basis table. This behavior is
also true of table manipulations along non-primary paths, but does not include the basis table.

The node of interaction on the primary path, which is parent to the basis table, affects what
SynApp2 refers to internally as providing the foreign key constraint. Whereas, any nodes on
non-primary paths (but still technically have master/parent relationship with the basis table) are
referred to internally as providing independent foreign keys.

In the case of the Ordered Book application, used in examples throughout this document, the

orders table constrains the ordered_book table. The book table is manipulated

independently. The notion of constraint and independence are trappings of the view domain
and embraced by the page flow as a matter of SynApp2 framework design choices.

In all cases, before you can add a record to a table, the values for all foreign keys must be
established. The goal of SynApp2 is to make sure this happens. The way it happens depends
upon the tier table selection(s) you make, if any, in Page Flow panel of SynApp2 PageGen.

 When you designate a tier table along a path, you're going to get a set of forms that
bear on a node of interaction and enable you to search for and select a record that will
supply a foreign key value to your basis table.

 For any path that does not have a tier table designation, a <select> (i.e. drop-down)

list is presented by the Input Form, associated with your basis table, allowing you to

choose an <option> (i.e. record) that will supply the needed foreign key value.

The number of records you expect to be in a table is very often the determining factor of
whether you designate a tier table for a given path.

 If you expect few records to be in a table, especially a fixed set of lookup items, a drop-
down list will probably be suitable. Do not designate such a table as a tier table.

 If you expect many records to be in a table, say of customers, designate that table as a
tier table. That will provide a search form with tabular record browsing and selection.

The order in which foreign key columns are defined (in your database schema) is a very
important factor for the page flow. If a table has multiple foreign keys, consider which
relationship represents the most defining, significant or natural access handle for a group of
detail records to be associated, or constrained, to a single master record. Define that key
column before any others.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 12
http://www.synapp2.org 2010-04-10

In the case of the Ordered Book sample we’ve been using, records in the ordered_book

table are most naturally grouped by orders. The records in the orders table are most

naturally grouped by customer. While the orders, and ordered_books tables each have

other foreign key columns, they really don’t define the overall character of the database.

It’s fast and easy to experiment with PageGen. See how your pages work when you do and do
not designate tier tables.

While you’re developing, there is a hypertext link mechanism, at the bottom of each page,
which helps you quickly jump back and forth between the pages you’re working on and the
web application generator. The link is only visible when you login and select an AppID (or
database) from the SynApp2 pages. Your users will not see the link.

Forms

Forms are automatically laid out on SynApp2 generated pages. They have labels and fields, or
headings and columns, as is appropriate for their purpose. Various forms may be used for data
input, output or both. Most forms have a control bar with buttons appearing as distinctive icons,
related to their intended use. The state of the buttons, enabled or disabled, is reflected by their
appearance. A full color button is enabled and a gray button is disabled. Buttons for certain
actions may not appear at all, if the related action is not authorized for the currently logged in
user.

As is the case for SynApp2 generated pages, request parameters that represent data are

posted as one or more name value pairs, retrieved from the <input> elements of a form. A

SynApp2 form is analogous to an HTML form, but does not actually use the <form> element,

or the traditional submit mechanism. This has plusses and minuses.

SynApp2 forms don’t appear within the DOM element hierarchy as forms, or support traditional

validation techniques that involve the onsubmit event handler. But, they do cleanly avoid

some pitfalls with regard to markup correctness when and as they are used with

XMLHttpRequest objects, i.e. AJAX. SynApp2 forms don’t need a dummy action attribute

to be valid. Because the traditional forms submit mechanism is not used, it would have to be

protected from inadvertent invocation, if compliant HTML 4.01 strict <form> elements were

used. SynApp2 avoids these issues altogether, while strictly adhering to the W3C standard.

[Aside: SynApp2 will move forward with newer standards. But, careful attention to detail
applied at this level of evolution provides firm footing.]

There are a number of functions/methods, implemented in _shared_/synapp2.js, that are

more closely related to the view than to the controller domain – discussed later. Aside from
drag and drop, the pattern for extending framework functionality isn’t accomplished with
JavaScript, so a detailed reference or discussion of the code will be left for another time and
place. But more generally, there are some notable mechanisms and functions worth talking
about.

All elements of the various GUI forms serve to display application data, at one point or another.
The application data is mapped into the form elements by name. The form elements have

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 13
http://www.synapp2.org 2010-04-10

name attributes that correspond to axis names, set out in an XML response returned, by the
server. The axis names are, or are derived from, column names defined in the database

tables. There is a class, named csx – for Client Side eXchange – that performs the transfer of

values from the XML to the HTML elements.

The value exchange happens during calls to the update_container() method. The csx

object transparently handles exchanges, whether receiving container is form-like or table-like.

Form-like means: has <label> and <input> elements. Table-like: means has (mostly) <tr>,

<th> and <td> elements and may possibly have many rows.

There are two important functions than manage the display elements, resize_container()

and show_container().

The resize_container() function literally resizes the underlying <table> to have at least

one row, but often more, usually depending on the number of data rows in the payload of the

incoming responses, up to the value of the LIMIT_ROWS setting established (currently from

the application’s custom.inc.php file). The smaller of the two values is used, and is

determined during each exchange/transfer.

The resize function uses the first row as a template for any additional rows, and creates
document object model (DOM) elements as needed. The styling of the rows uses that same
class and style attributes as the template row, with some minor adjustments to even numbered
rows to achieve alternating shades. Event handlers are also attached to cells. Specific
keyboard and mouse events are processed to provide shortcuts to important functionality.
There will be further discussion of this later.

The show_container() function, along with a few helpers, manages a state-machine that

hides or shows various forms as appropriate for each point (node of interaction) in the page
flow. The mechanism is short, sweet and solid. It’s worthy of study and understanding, and
we’ll leave you to do just that.

There is also a mechanism to manage the visible state of various <button> elements and to

gate access to associated events (action triggers) like search, add, edit, delete, close, and
select. The view receives tokens from an underlying authorization mechanism that can be
customized to allow or disallow functionality according to login username.

Actions are gated at both the GUI and at the functional level (on the server), according a
common set of directives. The details are covered by the SynApp2 Customization document.
Take some time to study the design and implementation these mechanisms.

There’s a boatload of stuff, built into every SynApp2 generated application, that manages a
mountain of small, but important details, and it’s all stuff that you don’t have to find, invent or
incorporate. It’s just there. Go ahead and use it.

http://www.synapp2.org/documentation/SynApp2_Customization.pdf

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 14
http://www.synapp2.org 2010-04-10

Form Roles

On a typical page, generated by SynApp2, there are one or more sets of forms. All of the forms
in a set are tailored to the work with same table. As you might expect, each kind of form in a
set plays a different role and becomes active according to the interactive page flow.

The set of form roles is:

 Search

 Display

 Select

 Input

 Statistics

 Report

Each role is supported by a different form definition and the markup for every form appears in

the source code of the page. Each form has an id attribute, unique to the page, which is used

by several mapping mechanisms to tie the form into the interactive page flow and data
exchange cycles.

The page flow is an important consideration as you develop an application. The structure of
the database – relations – drives the flow. As the developer you can control the flow. Perhaps
the most important other variable affecting the page flow is the order of foreign key column
definitions. The ordered_book example, seen throughout this document, would have a very

different character if ordered_book.id_book occured before ordered_book.id_orders

in the table definition for ordered_book.

Another significant factor of page flow is determined by your selection, or not, of any tier
table(s) from the page flow panel of the SynApp2 PageGen page.

Selections in Page Flow panel

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 15
http://www.synapp2.org 2010-04-10

Compare the Page Flow panel to the generated page and consider the relationship between
the tier table selections and the various forms.

Clear checkboxes on the Page Settings panel to prevent SynApp2 from generating or updating
Basis or Report pages. If a page has already been created, and you want to exclude it from the
application entirely, delete it (outside of SynApp2). If you want the page
(or report), but don’t want it to appear as a navigation (or report) tab, you can omit or
selectively authorize its availability. A discussion about how to do this appears later.

Page Layout corresponds to Page Flow selections in SynApp2 PageGen

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 16
http://www.synapp2.org 2010-04-10

The appearance of fields/columns on various forms is controlled from the SynApp2 Options
page.

The appearance of fields/columns is managed from the SynApp2 Options page

Customization settings from the SynApp2 Options page are stored in the synapp2.inc.php

file, located in the application directory. There are addition customizations that can be

introduced from the custom.inc.php file for the application. Once again, you’ll find more

information about this in the SynApp2 Customization document.

Each form has a corresponding form key that appears literally, and is frequently incorporated
into variable names, throughout SynApp2 source code.

The set of form keys is:

 SFORM (Search)

 DFORM (Display)

 TFORM (selecT)

 IFORM (Input)

 AFORM (stAtistics)

 FFORM (report Filter)

http://www.synapp2.org/documentation/SynApp2_Customization.pdf

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 17
http://www.synapp2.org 2010-04-10

Screen Image

A semi-transparent Screen image is used to overlay all but one or two active forms. The
overlay will automatically adjust in size as changes are made to the window dimensions. Only
the form that requires attention is accessible.

The Input Form is active (on top of the screen)

The screen image is incorporated with the following element:

<div id="id__iform__screen"><!-- empty --></div>

The default screen image container element is appears in synapp2/template.htm and is

styled with CSS elements you’ll find in _shared_/standard.css.

Display Size and Page Layout

SynApp2 generated pages have a fluid layout, controlled by CSS. The default layout and

styling of pages is defined in _shared_/standard.css, and incorporated through a <link>

element in synapp2/template.htm.

The default stylesheet link for SynApp2 and generated applications is:

<link rel="stylesheet" type="text/css" href="../_shared_/standard.css">

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 18
http://www.synapp2.org 2010-04-10

Pages that deal with a hierarchy of tables may have two or more side-by-side columns of
forms in the page flow. If your window or display is too narrow, the columns of forms will
collapse into a single column. This isn’t fatal, but it’s not optimum.

A Collapsed Page Layout

If the forms collapse, there are several things you can try to make the layout better. First, try to
make the text size smaller. Ctrl- [minus] (or ctrl+ [plus]) will change the text size. You could
also try to make some of the forms narrower by reducing the column (display) size, or omitting
(the display of) some columns altogether. Use the SynApp2 Options page to do this.

Omitting non essential columns from Select forms saves horizontal space, and omitting
fields/columns from Search and Display forms saves vertical space. You can reduce the

number of LIMIT_ROWS on Select forms too. See the SynApp2 Customization document for

details.

http://www.synapp2.org/documentation/SynApp2_Customization.pdf

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 19
http://www.synapp2.org 2010-04-10

Another way to control the layout would be to set a fixed width for one of the main page

elements (template.htm) to be something like:

<div id="id_page_content" class="class_page_content" style="width:2500px;">

Here the width is set with a style attribute, but you could do it with CSS (standard.css).

Specifying a width will most likely result in a horizontal scrollbar at the bottom of the page, but
it will keep the layout from collapsing. Experiment to find a width value that works well for you.

A Normal Page Layout

Use any combination of methods to make the page appear as it should.

Once a page is generated, it can become its own template. This is useful, as long as your
changes do not appear between output (delimiter) tags. Use the page file name as the
template file name. Do this after you have modified the existing page to incorporate a logo or
other specialized markup.

From the SynApp2 PageGen - Page Settings panel, specify the Basis Page Template, relative

to the synapp2/synapp2 application directory, with the general form:

../<your_appid>/<your_page_name>.htm

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 20
http://www.synapp2.org 2010-04-10

A few SynApp2 output delimiter pairs from <install_dir>/synapp2/template.htm:

//<!--{xch}-->

//<!--{/xch}-->

//<!--{map}-->

//<!--{/map}-->

//<!--{ovl}-->

//<!--{/ovl}-->

<!--{css}-->

<!--{/css}-->

<!--{group}-->

<!--{/group}-->

<!--{iform}-->

<!--{/iform}-->

If you don’t want your markup to be overwritten, it must be outside any delimiter pairs. If you
must put markup inside the delimiters, clear the appropriate checkbox on the SynApp2
PageGen – Page Settings panel. This will prevent SynApp2 from updating (writing to) the file
containing your specialized markup.

If you make changes to your database structure or to SynApp2 Options that should be
reflected in the page markup, you’re either going to need to re-introduce your customizations,
or propagate updated elements from an alternate page, generated under/with a different name.

About Browsers

All elements of the display are designed to scale nicely when the browser text size changes.
This works especially well with Firefox. Internet Explorer has text size control too, but it‘s
available only from the browser command menu. The ctrl+ and ctrl- shortcut keys behave
differently, depending on browser. IE7+ performs an unfortunate graphic zoom effect where as
Firefox, and others, seem to adjust the document elements more sensibly. They all behave
differently.

Overall Safari works pretty well, on all platforms, even on the iPhone , iPod Touch and iPad.
Google Chrome works nicely, but doesn’t really have a useful status bar. Versions of Opera
prior to 10 just weren’t up to the task. Version 10.1 works reasonably well, but is slightly out of
step with the others when it comes to keyboard event handling. It’s serviceable though. But, if
the page content exceeds the window height (the vertical scroll bar is present), you may see
the display scroll as you use the up and down cursor keys in SynApp2 tabular Select forms.

Keep features like forms auto-fill and auto-capitalization turned off until you are familiar enough
with how the application should work, to know if there are any issues raised. Do watch for
issues caused by overzealous caching of the web pages, any time you regenerate pages,
make sure you do a hard refresh for each of the affected pages (ctrl-R or ctrl-F5 depending on
browser), or clear the browser cache altogether. In any case, if you experience any quirks that
detract, consider using the Mozilla Firefox browser to run your applications.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 21
http://www.synapp2.org 2010-04-10

Controller

The controller is comprised of elements executed on both the server and the in the client
browser. The top-level object on the server side of the controller is implemented in the PHP

source file: _shared_/action.php. The other side of the controller coin is implemented in

the JavaScript source file: _shared_/synapp2.js. Even though elements of the controller

and view implementations coexist, the domains remain clearly separated.

Exchange Cycle

Ordinary application data moves back and forth between user interface (UI) elements, visible
in your web browser, and a data repository on your web server according to events that you,
as a user, initiate. The exchange technique is commonly referred to as AJAX.

The exchange cycle consists of a triggering event, followed by parameter extraction and action
encoding, sending of a [HTTP] request, receiveing of a request, parameter and action
decoding, action processing, result processing, response formatting, return of a [XML]
response, response reception. Any response data is subsequently transferred to the to the
view with a clean row-name-value interface.

Requests convey several fundamental parameters along with ordinary application data.

The appid – application ID – is the most significant request parameter. In the parlance of
software terminology, appid bears some similarity to the concept of a namespace. The appid
provides a context within which other request parameters are interpreted. Within the context of
an appid, a qid – query ID – typically provides sub-context for actions and is a symbolic
reference used as a key to select a specific interrogation or process that is then used to affect
the data model.

Customization of the exchange cycle is easily accomplished, but by default, a number of
standard behaviors should be understood. We'll touch on a few elements that are important to
the foundation of understanding how SynApp2 works.

The heart of SynApp2 is a Structured Query Language (SQL) generator. The elements of an
SQL statement are assembled from a variety of sources and submitted to the database
engine. This will all be covered in more detail, but for now, let’s focus on how appid and qid
affect things.

As you hopefully know, the relational database engines that support SynApp2, conceptually
store data in tables. A group of related tables are, again conceptually, considered to be a
database. That's what MySQL calls it. Oracle is different in that it collects tables (and other
objects) into a schema. SynApp2 casts the Oracle schema back into the notion of a database.

As far as SynApp2 is concerned, a database has a name. If you don't specify otherwise, the
value of appid corresponds directly to a database name. It also provides the name for the
application directory, where SynApp2 generated pages are stored. This can be changed, of
course, but we'll not concern ourselves with that here.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 22
http://www.synapp2.org 2010-04-10

Given a database name, SynApp2 will cause the database engine to connect to it. The topic of
database connections will also be deferred. Here, we'll just acknowledge that a connection
happens. Once connected to a database, SQL queries typically refer to one or more tables.

If you don't specify otherwise, the value of a qid is the name of a table. This too can be
changed, or customized, but we'll leave that for later.

Virtually every influence over application (and framework) behavior, keys off of qid values.
Different aspects of influence occur according to a small set of action and mode parameters as
they vary during the course of interaction. Request actions are processed in light of the other
request parameters.

The qid abstraction is unique to SynApp2 and provides outstanding separation from and
between implementation details and factors governing inputs, control logic, processing, and
outputs. All points of programmatic interaction are defined by distinct combinations of qid,
action and mode values. Input data, supplied by various means, is uniformly presented during
exchanges between the client browser and the server, and is managed according to the
specific situation expressed.

All SQL statements originate on, and in the protected environment of the server. All data
values and query terms are escaped and checked, to prevent SQL insertion attacks.

All aspects of the applications and databases are protected by an access controller. No data
can be retrieved or affected without proper authentication and authorization.

A SynApp2 page will have a set of [HTML] forms for the basis table. The page may also have
sets of forms for related tables. Each set of forms is mapped to a qid, and thereby, to a table.
There are several specialized kinds of forms that may be part of a set and different ones may
be active (and visible) at different points along various exchange cycles and interactive flow of
the page.

When a specific form becomes active, it serves as a container. A container can provide both a
source and a destination for ordinary application data, and indirectly, provides a source of

request parameters by way of mapping between the container id attribute and a qid. Other

parameter values, related to a container, are similarly mapped.

Given the following parameters:

appid="MyData",

qid="Greetings",

greeting="Hello World!",

action="ACTION_INSERT";

-- you could expect something like this to occur on your web server --

INSERT INTO MyData.Greetings (greeting) VALUES ("Hello World!");

To complete the exchange cycle, a response is always returned for each request. The
response will typically include status or error information and ordinary application data.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 23
http://www.synapp2.org 2010-04-10

Events

The controller is driven by events that begin when your web browser visits a SynApp2
generated page.

Page Load

During the page loading process, various HTML elements are processed. JavaScript code is
executed and this results in several objects and internal data structures being instantiated.

The SynApp2 application ID, or AppID (appid), and Page ID (pid) are defined at this time.

set_appid('dbmain');

set_pid('ordered_book');

Associations between id attributes of HTML container elements, SynApp2 query ID's (qid),

and role in the page flow, are accomplished by registration methods that appear in the //<!--

{map}--> (map) section of a SynApp2 generated page.

Once the SynApp2 page load completes, control is passed to a handler specified by the value

of the onload attribute that appears in the HTML tag <body>.

<body id="id_body" onload="page_init();">

The page_init() function invokes several other methods, which in-turn fire several events

that exchange data between your browser and your web server, using an AJAX mechanism.

function page_init()
{
 do_init();
 do_app_nav('id_app_nav');
}

The functions perform miscellaneous internal chores, including dynamic generation of the

navigation tabs that appear at the top of the page. The forms_reset() method literally

resets HTML form elements and causes the input focus to settle on an appropriate <input>

element.

The do_init() method initializes the state of the user interface elements and page flow

mechanism. It is only required for SynApp2 generated pages. It may be omitted for pages
created by other means and for other purposes, although it doesn’t hurt to include it.

The do_app_nav() method ties the page in with the navigation tab mechanism. The function

argument 'id_app_nav' is the container where the dynamically generated elements will be

inserted. If you create a supplemental page you’ll need to make an entry in custom.inc.php

to make it appear as one of the navigation tabs. See below.

For supplemental custom pages, that you create manually, there are several other useful

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 24
http://www.synapp2.org 2010-04-10

functions that you may want to call from the page_init()function.

Examples of these include:

map_vkey_action('id_myform', VKEY_ENTER, my_submit_func, true);

set_input_text_value('id_start_date', getStartDate());

set_focus('id_end_date');

Hopefully, the purpose and usage of these functions are somewhat self evident. You’ll find
them implemented in synapp2.js and used extensively. Take a look in

shared/synapp2.js for examples. You’ll find the complete set of virtual key (VKEY)

definitions there.

On SynApp2 generated pages, you’ll see a cyan colored border around the form that is
listening for keyboard shortcuts supported by the VKEY mechanism.

TODO: table of shortcuts vs. form roles

Shortcut key behaviors depend on the form role.

Page Navigation and Report Tabs

The navigation tabs at the top of pages are dynamically generated in response to an event

triggered during page_init() by a call to do_app_nav().

Navigation tabs for the Ordered_book application

The active tab appears white, according to CSS elements you’ll find in

shared/standard.css.

When a navigation tab is clicked, the browser loads a new page, via an ordinary hypertext link,
and the event sequence of the new page proceeds accordingly. You can customize your
application by including supplemental tabs, or by omitting others. You can selectively authorize
(i.e. display) tabs based upon login username.

A good way to get started with a custom page (or report) is to copy one of page files generated
with SynApp2 PageGen and then make changes to that copy. Use an interactive page or a
report page as a base, according to the flavor of page you’re going to make.

Page navigation tabs, report tabs and authorization entries are all made in the

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 25
http://www.synapp2.org 2010-04-10

custom.inc.php customization file in the application directory.

Examples of adding page navigation tabs:

$this->m_data[APPID]['iso_training'][INCL][NAV] = 'training, attendance, roster';

$this->m_data[APPID]['mfg_scheduling'][INCL][NAV][] = array(A_HREF=>'scheduling',

A_TEXT=>'Build - Schedule');

You can add report tabs the same way:

$this->m_data[APPID]['purchasing'][INCL][RPT] = 'product, supplier';

All tab names imply filenames, e.g., product.htm, roster.htm, scheduling.htm, etc.

The page/report file must exist on the server in order to appear on a tab. If the file isn’t there,
the tab won’t be either. This is useful behavior. If you find that a page or report, especially one
for a support table, contributes to tab clutter, just delete the associated page and/or report and
the tab(s) will go away.

Use NAV or RPT OMIT entries when you want to keep the page or report (file), but don’t want a

tab for it. You can access any page directly by entering its URL or from a browser shortcut.
Access control to all pages and reports, is always available through the authorization
mechanism.

You can control availability of various application elements with authorization entries in the

custom.inc.php file.

Examples of authorization entries:

$this->m_$admin_users = 'richard,tracy';

$principal_users = ',manny,moe,jack';

$this->m_data[APPID]['projtrack'][AUTH_QID]['activity'] = $admin_users;

$this->m_data[APPID]['projtrack'][AUTH_PID]['activity'] = $admin_users;

//$this->m_data[APPID]['projtrack'][AUTH_PID]['activity_projects'] = $admin_users .

$principal_users;

$this->m_data[APPID]['projtrack'][AUTH_PID]['worker'] = $admin_users;

$this->m_data[APPID]['projtrack'][AUTH_PID]['project'] = $admin_users;

$this->m_data[APPID]['projtrack'][AUTH_PID]['project_status'] = $admin_users .

$principal_users;

$this->m_data[APPID]['projtrack'][AUTH_PID]['process'] = $admin_users;

$this->m_data[APPID]['projtrack'][AUTH_PID]['reports'] = $admin_users .

$principal_users;

$this->m_data[APPID]['projtrack'][AUTH_RID]['status_type'] = $admin_users;

$this->m_data[APPID]['projtrack'][AUTH_RID]['activity'] = $admin_users .

$principal_users;

$this->m_data[APPID]['projtrack'][QID]['worker'][AUTH_ADD] = $admin_users;

$this->m_data[APPID]['projtrack'][QID]['worker'][AUTH_EDIT] = $admin_users;

$this->m_data[APPID]['projtrack'][QID]['worker'][AUTH_DELETE] = $admin_users;

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 26
http://www.synapp2.org 2010-04-10

Any application, query, page, report or data action that does not have a specific AUTH_XXXX

entry, will be accessible to any login username.

See the SynApp2 Customization document for details.

Search

Most page interactions begin with a Search Form. Search is initiated with the button on the
control bar of the form. The form serves as a filter for the request. The underlying action is

ACTION_SELECT and the mode is MODE_GET_NORM. See _shared_/synapp2.js for the full

set of request action and mode definitions. The request action and mode parameters are

posted to _shared_/action.php. Look there to see how these values drive the framework

controller.

All values of the <input> elements of the Search Form are posted along with the request

parameters. As the response is handled, the associated Select Form (container) is updated
with any retrieved data rows/records.

Values from the <input> elements of Search Forms are used to build the WHERE clause of

the generated SELECT statement. The LIKE operator is combined with non-empty name-value

pairs. The % wild card character appears at either end of each literal value, and the sub-

expressions evaluate as TRUE if the literal appears anywhere in the column value. This

produces a record filtering effect as it is applied.

select ... where publisher.pub_name like '%reilly%' and

 book.book_title like '%java%' ...

The search event and most other table navigation events have handlers similar to:

function do_search(tform_id, sform_id)

{

 var xch = new cxl();

 xch.set_container(tform_id);

 xch.set_filter(tform_id, sform_id);

 xch.send_request();

}

Event handlers for the various form actions are assigned according to control names and are

bound to controls through the onclick attribute. Keyboard and mouse shortcuts are

subsequently bound to whatever is assigned to onclick.

Named control elements from a SynApp2 generated page:

...

<div class="class_control_bar_controls">

<button type="button" name="do_search" title="Search"><img

src="../_shared_/img/action_search.gif" alt="Search"></button>

http://www.synapp2.org/documentation/SynApp2_Customization.pdf

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 27
http://www.synapp2.org 2010-04-10

<button type="button" name="do_reset" title="Reset"><img

src="../_shared_/img/action_reset.gif" alt="Reset"></button>

<button type="button" name="do_add" title="Add"><img

src="../_shared_/img/action_add.gif" alt="Add"></button>

</div><!-- class_control_bar_controls -->

...

Binding controls to handlers:

...

switch (control_name)

{

case 'do_search':

 eval("control_element.onclick = function() { do_nav_first(...); }");

 map_vkey_action(container_id, VKEY_ENTER, control_element.onclick);

 break;

...

The search event is tied into the framework using the same techniques as the events
described hereafter. As we’ve set out a number of the important implementation details for the
search event, the discussions for the remaining events will be less verbose.

There are some subtleties that simply can’t be explained more concisely than the code that
implements them. You’re encouraged to explore the JavaScript code in

shared/synapp2.js with a debugger. All of the major browsers have interactive

debuggers. Set a few breakpoints, step through some functions, and discover how the
framework behaves.

Reset

A reset event is initiated with the button on the control bar of a Search Form. The reset

event triggers the clearing of all Search Form <input> elements, followed by a search event

as described above.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 28
http://www.synapp2.org 2010-04-10

Browse (Row/Record Navigation)

Any records that satisfy the search filter (criteria) are presented in a tabular Select Form. If the
number of records retrieved exceeds the maximum number of rows allowed for the form

(controlled by a LIMIT_ROWS entry in custom.inc.php - the default value is 5), then

controls and keyboard shortcuts are enabled to facilitate paginated row/record browsing.

Button controls, to trigger navigation events for first page , page up/previous ,

page down/next and last page , are available on the control bar of the Select Form. Their
enabled or disabled state is appropriately managed according record/row position.

The first three (of seven) rows are visible with only page down/next or last page navigation available

A page down event triggers scrolling to a new page in the tabular Select Form:

After Page Down is triggered, rows four through six (of seven) are visible with all row navigation choices available

As you might expect, some keyboard shortcuts are usually available. If your workstation has
them, the Home, PgUp, PgDn and End keys correspond to and trigger the four cardinal
row/record navigation events. Up Arrow and Down Arrow keys move the row highlight and will
trigger page up/down navigation events from the top or bottom row of the Select Form.

For each navigation event, the underlying action is ACTION_SELECT and the mode is

MODE_GET_NORM. As each response is handled, the Select Form (container) is reset/cleared,

resized (as needed), and updated with retrieved data rows/records (if any).

Whenever a Select Form is paired (appears) with Search Form, row/record navigation is
filtered by any values that appear in the fields of the Search Form.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 29
http://www.synapp2.org 2010-04-10

Select

The select event is only needed when, and therefore only triggered from (a) Select Form(s)
involved with a hierarchy of related tables that are manipulated on the same page SynApp2
generated page.

The select event, initiated with the button, on the control bar of a Select Form, triggers a

request where the underlying action is ACTION_SELECT and the mode is MODE_GET_NORM.

The container is a Display Form which gets updated with values from the selected row/record.
The Select Form, from which the select event was triggered, is rolled up (hidden) and replaced
by the Display Form.

A follow-up event (and request) is generated. The underlying action is again ACTION_SELECT

and the mode is MODE_GET_NORM. The container is a Select Form associated with a table that

is on the many side of a relation. The rows/records, if any, returned in the response are
constrained to be only those related to (details/children of) the one (master/parent) record that
was selected.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 30
http://www.synapp2.org 2010-04-10

Many (8) Orders rows/records belong (are constrained) to one (1) selected Customer

The button, on any Select Form, is not become enabled unless exactly one row/record,
visible in the form, is checked (and therefore highlighted).

The Enter or Right Arrow keys also fire the select event if the Select Form is active (has the
cyan border around it) and the select event/button is enabled.

The select event can also be initiated with a click on a Select Form row data cell (not the
selection checkbox or the row number). Such a click will exclusively check/highlight that row
and initiate the select event. This works even if one or more rows already checked/highlighted.

If the table containing the selected record is not the master/parent of the page basis table, a
Select Form is presented along with its associated Select Form. The Select Form can be used
to filter records in the associated Select Form. Whether or not Search From is used, any
records that are retrieved and displayed in the Select Form, are constrained to be
details/children of the selected master/parent.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 31
http://www.synapp2.org 2010-04-10

Sort rows/records with a click on any Select Form column heading. Click the same column
again to reverse the order. Click in the upper left corner of the form to restore the default sort
order.

A diamond symbol, next to a column heading, indicates alternate sort order and direction:

Customers are sorted by descending number of orders placed

The default sort order for a table is by primary key (PK) value. As primary keys are numeric
and typically assigned in a sequence of ascending values, the order of records is effectively

chronological. The default sort order for a qid/table can be set with an ORDER entry in

custom.inc.php.

Records are sorted as they are retrieved from the database – not by the browser.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 32
http://www.synapp2.org 2010-04-10

Add

The Add event is initiated with the button on the control bar of either a Search Form or a

Select Form. A request/response cycle is triggered and underlying action is ACTION_SELECT

and the mode is MODE_GET_INIT. The container for the request is an Input Form.

As the response is handled, any returned column values are used to initialize fields of the Input
Form and the form is presented. The seemingly innocuous Add event subsequently triggers a
cascade of useful behaviors involved with form initialization.

There is a lot of information to convey about what happens as Add sequence unfolds and the
application is set up to capture input and insert a new record into a table. Please take your
time. Read carefully and consider how the various parts of the discussion would likely apply to
similar situations you may have to deal with in your work.

The following discussion centers on typical situation you might find in an order-entry
application. Here, a book is about to be added as a line-item of an order.

Here, the (Add) button is enabled because of the checked/highlighted row in Select Form - Book

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 33
http://www.synapp2.org 2010-04-10

 The button, on any Select Form associated with the page the basis table, does not become
enabled until a row/record in every Select Form associated with a master/parent table is
chosen (checked/highlighted).

Form initialization, triggered by the Add event, is accomplished, in this case, with two
exchange cycles. The second cycle is triggered because SynApp2 PageGen recognized the

signature of a lookup/copy situation and automatically incorporated a call to reg_lookup() in

the generated page. There’s more on this in a moment.

The first exchange returns the default value for ordered_book.quan_ordered, as specified

in the SQL table definition for ordered_book. Additional data is returned to initialize what

SynApp2 calls expanded elements. And, there’s more on expanded elements - shortly.

An initialization response with default values for an ordinary field and expanded elements:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>

<response>

<version>0.1.7</version>

<authentication>succeeded</authentication>

<authorization>succeeded</authorization>

<request_action>select</request_action>

<request_mode>get_init</request_mode>

<qid>ordered_book</qid>

<query></query>

<found_rows>0</found_rows>

<insert_offset>0</insert_offset>

<rows>1</rows>

<cols>1</cols>

<firstpage>1</firstpage>

<lastpage>1</lastpage>

<payload>

<axis>quan_ordered</axis>

<tr><td>1</td></tr>

</payload>

<select name="ordered_book_id_orders">

<option value="90">10090 2010-03-01 (Anderson, Andy)</option>

</select>

<select name="ordered_book_id_book">

<option value="2">CSS Mastery - Advanced Web Standards Solutions (1-59059-614-5

)</option>

</select>

</response>

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 34
http://www.synapp2.org 2010-04-10

 The SQL column sub-expressions for expanded elements are provided according to MACRO

entries in custom.inc.php. See the SynApp2 Customization document for details.

A customization MACRO entry for the foreign key column 'ordered_book.id_book':

$this->m_data[APPID]['dbmain'][QID]['ordered_book'][MACRO]['ordered_book.id_book']

= "concat(book.book_title, ' (', book.ISBN, ')')";

If there is no MACRO entry for a foreign key, SynApp2 automatically uses value the first non-key

column according to the master/parent table definition, if there is one. If not, as a last resort,
the raw key value is used.

Column expressions and names – aliases - for expanded elements are synthesized and
incorporated into generated SQL statements and query results. The column alias

ordered_book_id_book was formed from the (qualified) foreign key column name

'ordered_book.id_book', using '_' (underscore) rather than '.' (dot) to combine the

terms. The resulting column alias is 'ordered_book_id_book'. This convention is easy to

remember.

When working with SynApp2 generated SQL and query results, there are always two columns
for every foreign key involved. One column is the raw key value and name. The other is the
expanded value with its synthesized alias, as described above.

After the Add event and initialization exchange, in this particular discussion, a second

exchange occurs because the tables book and ordered_book each have an identically

named column - price_retail. The value of book.price_retail is copied to

ordered_book.price_retail.

If you wanted lookup/copy behavior between columns with dissimilar name, include a FETCH

entry in custom.inc.php. As PageGen runs, the necessary call to reg_lookup()will be

included in the generated page. This lookup/copy functionality is available when two tables
have a master/parent – detail/child (one-to-many) relationship. If more than one column name
is shared, additional exchanges occur as necessary until every column value has been copied.

If you don’t want automatic column lookup/copy behavior to occur, don’t have identically
named columns.

Any lookup/copy exchange, triggered subsequent to the initial Add event, has an underlying

action of ACTION_SELECT with the mode being MODE_FETCH. The container for the request is

the Input Form.

A lookup/copy response:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>

<response>

<version>0.1.7</version>

<authentication>succeeded</authentication>

<authorization>succeeded</authorization>

<request_action>select</request_action>

http://www.synapp2.org/documentation/SynApp2_Customization.pdf

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 35
http://www.synapp2.org 2010-04-10

<request_mode>fetch</request_mode>

<qid>book</qid>

<query></query>

<found_rows>1</found_rows>

<insert_offset>0</insert_offset>

<rows>1</rows>

<cols>10</cols>

<firstpage>1</firstpage>

<lastpage>1</lastpage>

<payload>

<axis>id,isbn,id_publisher,book_id_publisher,id_genre,book_id_genre,book_title,

synopsis,price_wholesale,price_retail</axis>

<tr id="2"><td>2</td><td>1-59059-614-5</td><td>2</td><td>Springer-Verlag New York

Inc</td><td>4</td>

<td>Reference</td><td>CSS Mastery - Advanced Web Standards

Solutions</td><td>Computer language reference

</td><td>21.00</td><td>35.00</td></tr>

</payload>

<debug_msg>

$_POST

Array

(

 [_request_action_] => select

 [_request_mode_] => fetch

 [_request_pid_] => ordered_book

 [_request_qid_] => book

 [_request_appid_] => dbmain

 [_request_flow_] => Array

 (

 [0] => customer,1020,id_orders,orders,id_customer

 [1] => orders,90,id_orders,ordered_book,id_orders

 [2] => ordered_book,185

 [3] => book,2,id_book,ordered_book,id_book

)

 [_request_context_] => Array

 (

 [0] => customer,1020

 [1] => orders,90

 [2] => ordered_book,185

 [3] => book,2

)

 [_request_flow_basis_] => id_orders

 [_request_limit_offset_] => 0

 [_request_limit_rows_] => 1

 [_request_order_] =>

 [_request_pk_] => 2

 [_request_show_response_] => true

)

</debug_msg>

</response>

The <debug_msg> element (and contents) is not included in a routine exchange. It appears

here (for illustration) because the request_show_response parameter was set.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 36
http://www.synapp2.org 2010-04-10

After all initialization and lookup/copy exchanges are completed, the Input Form is presented -
ready for interactive editing.

The Input Form waits for either of two events associated with buttons:

The Input form is displayed with fields initialized and focus set to first editable field

The field labeled Book is read-only as it is an expanded element.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 37
http://www.synapp2.org 2010-04-10

 While the Input Form waits, lookup/copy (FETCH) request/response cycles may be triggered by

onSelect events of <select> (i.e. drop-down) list elements present on the Input Form. The

use of a Search Form / Select Form pair, as opposed to a list-box is controlled by a choice on
the Page Flow panel of SynApp2 PageGen.

An Input Form with a list-box to choose a book:

As a book is selected, book.price_retail is copied to ordered_book.price_retail:

Regardless of how a book record is chosen, the same lookup/copy mechanism is used to

propagate the retail_price value from the book record to ordered_book record.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 38
http://www.synapp2.org 2010-04-10

The Ok button triggers a request where underlying action is ACTION_INSERT and the mode is

MODE_PUT_NORM. The Input Form is the container for the request. The ENTER key can also

trigger Ok.

If the entered data is successfully validated, a new record is inserted.

If any entry fails validation, a descriptive message appears for each condition. All of the Input
Form values are sticky. The Input From again waits for an Ok or Cancel button click.

Messages for two data validation failures

If the Cancel button is clicked, a request/response cycle is triggered and underlying action is

ACTION_SELECT and the mode is MODE_CANCEL. The container for the request is the Input

Form. The ESC key can also trigger Cancel.

Once a record is inserted, or the Cancel button is clicked, another request/response cycle is
triggered to synchronize the associated Select Form with the new record or whatever
row/record that had been selected, prior to the Add event that started things rolling. The

underlying action is ACTION_SELECT and the mode is MODE_GET_NORM. The container is the

associated Select Form. The cycle is almost identical to one triggered by Search.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 39
http://www.synapp2.org 2010-04-10

Select Form - Ordered Book is synchronized with the newly inserted row/record

Edit

The Edit event is initiated with the button on the control bar of a Select Form. A

request/response cycle is triggered and underlying action is ACTION_SELECT and the mode is

MODE_GET_NORM. The container for the request is an Input Form.

The button, on any Select Form, does not become enabled until exactly one row/record,
visible in the form, is chosen (checked/highlighted).

The Input Form is initialized with values from the response (that were retrieved from the
database table, for the selected record).

From this point in the page flow, the Input Form waits exactly as it does when triggered by the

Add event. The only difference is an action value of ACTION_UPDATE, if the Ok button is

clicked.

While the Input Form is waiting, the lookup/copy mechanism for list-boxes is in play, just as is
when the event is Add. See the pullout discussion of the lookup/copy mechanism above.

If validation is successful, the selected record is updated and the associated Select Form is
synchronized with the updated record.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 40
http://www.synapp2.org 2010-04-10

Delete

The Delete event, initiated with the button on the control bar of a Select Form

The button, on any Select Form, does not become enabled until at least one (or more)
row(s)/record(s), visible in the form, is/are chosen (checked/highlighted).

A confirmation dialog appears in response to the Delete event.

To carry out record deletion, you must confirm the operation by clicking OK

If you Cancel, the confirmation dialog is dismissed without further action.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 41
http://www.synapp2.org 2010-04-10

If you continue, by clicking Ok, an exchange cycle is triggered with an underlying action of

ACTION_DELETE and mode value of MODE_PUT_NORM. There is no container for the request.

The SynApp2 framework has detected record dependencies and will not allow the selected records to be deleted

The framework automatically checks for record dependencies. If any detail/child records for
any of the selected master/parent records are found, a message dialog is presented.
Otherwise, the selected rows/records are deleted and the associated Select Form is
synchronized to the first row with another exchange cycle.

The SynApp2 framework safeguards the referential integrity of the database and will prevent
orphan records from occurring. Cascade delete is not currently supported, so you must delete
any detail/child record(s) before you can delete a master/parent record.

You can easily create and integrate custom processes to do any combination of periodic
record maintenance chores, such as: backup, export, purging, or data warehousing.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 42
http://www.synapp2.org 2010-04-10

Close

The Close event, initiated with the button on the control bar of a Select Form. A

request/response cycle is triggered where the underlying action is ACTION_SELECT and the

mode is MODE_CLOSE.

As the response is handled, the active form will shift to the Select Form associated with a
master/parent table, or to the Search Form of the current Search / Select Form pair, depending
on the conditions. Forms are dismissed and presented as appropriate.

The Close event allows you to work backward through the table/form hierarchy of the page.
The resulting behavior is essentially the inverse of what happens for the Select event.

If a Select Form is active, close can be triggered with the ESC key.

Statistics

After any actions that do, or could, change records in a table, additional exchange cycles may
be triggered, ostensibly to allow computation, or even post-processing of dependent values or
data, and optionally displaying the results in elements of a Statistics Form.

Typical customization entries for statistics:

$subtotal = "sum(ordered_book.quan_ordered * ordered_book.price_retail)";

$tax = "{$subtotal} * 0.0775";

$this->m_data[APPID]['sample'][QID]['ordered_book'][FETCH]['subtotal'] =

"format({$subtotal}, 2)";

$this->m_data[APPID]['sample'][QID]['ordered_book'][FETCH]['tax'] =

"format({$tax}, 2)";

$this->m_data[APPID]['sample'][QID]['ordered_book'][FETCH]['grand_total'] =

"format({$subtotal} + {$tax}, 2)";

Given the above entries, SynApp2 PageGen will emit the following to ordered_book.htm:

//<!--{map}-->

...

reg_blind('id__aform__00__ordered_book__subtotal');

reg_blind('id__aform__00__ordered_book__tax');

reg_blind('id__aform__00__ordered_book__grand_total');

...

//<!--{/map}-->

...

<div id="id__aform__00__ordered_book" class="class_form_std class_form_stat">

<label>Subtotal:</label>

<input readonly id="id__aform__00__ordered_book__subtotal" type="text"

name="subtotal" size="10" style="text-align:right;">

<label>Tax:</label>

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 43
http://www.synapp2.org 2010-04-10

<input readonly id="id__aform__00__ordered_book__tax" type="text" name="tax"

size="10" style="text-align:right;">

<label>Grand Total:</label>

...

The reg_blind() statements set up a map that is used to prevent Stat Form <input>

values from being posted as parameters to the request.

The Statistics Form, or Stat Form, elements appear within a dedicated <div> of a Select

Form. Request/response cycles are automatically triggered, once for each element. The

underlying action is ACTION_SELECT and the mode is MODE_FETCH. The Stat Form is the

container for the response.

The exchange applies a corresponding FETCH expression, keyed to the request qid and

selected by name.

Statistics Form elements appearing within Select Form - Ordered Book

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 44
http://www.synapp2.org 2010-04-10

By default, Statistics Form values are right-aligned. If you want to change text alignment or
adjust field display size use additional customization entries.
Typical customization entries for text alignment and column size:

$this->m_data[APPID]['sample'][QID]['ordered_book'][AFORM]['tax'][COL_ALIGN] =

ALIGN_L;

$this->m_data[APPID]['sample'][QID]['ordered_book'][AFORM]['tax'][COL_SIZE] =

'5';

Note the AFORM form key that associates the entries with the Statistics Form. See the

SynApp2 Customization document for information about column output formatting.

Templates

Templates supply static markup and code and define insertion points for markup and code
generated by SynApp2 PageGen. You can add or change markup in a template. That’s how
you would add a logo or banner text or change the background. You can incorporate third
party JavaScript libraries too.

If not present, files for index.html and <appid>.welcome.htm are generated into the

application directory (by SynApp2 PageGen) only when Regenerate All is not checked. If you
need to create or want to recreate those pages, clear the Regenerate All checkbox and run
PageGen for any individual page that belongs in your application.

In the _shared_ directory, you’ll find template files for the index and welcome pages, plus

template.htm, used for application pages, and template.report.htm, used for report

pages. You’ll also find login.htm and standard.css. You can modify the files to

personalize you applications.

For the app and report templates, you can make specialized versions and choose which to
use, from the PageGen - Page Settings panel. See the earlier discussion about how an
existing application page can act as a template.

Reports

Tabular reports are generated as PDF files and presented by way of Adobe Reader. The

reader is almost universally installed, and if not, the report file may be downloaded and saved
for later use.

Customizations of reports can include specification of EXTRA columns and statistics with

DETAIL_SUMMARY_COLS entries in custom.inc.php. You can also control page size and

orientation. Any column widths that s that don’t have an explicit specification, are dynamically
calculated – including multi-row cells.

http://www.synapp2.org/documentation/SynApp2_Customization.pdf

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 45
http://www.synapp2.org 2010-04-10

A Report Form is presented to allow control over scope of the records to be reported. As

describe earlier, values entered in the fields are incorporated into the SQL using the LIKE

operator, except for dates. Dates are entered as ranges and a date picker control is
accessible. Leave a date field blank for an open ended query.

A Report Form

Report data can be downloaded to a file or opened directly by programs such as Excel.

Your reports can have different headings and formats – this one has cell borders turned on:

A tabular PDF report displayed in Adobe Reader

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 46
http://www.synapp2.org 2010-04-10

Custom Processes

Customized processing functions can be defined. Elements of the SynApp2 exchange cycle
can be harnessed to support interactive forms used for gathering parameters and invoking
processes.

Almost anything can be done using this mechanism. See the SynApp2 Customization
document for more information about custom processing.

Custom GUI to drive shift schedules is neatly integrated into a sophisticated application

Your function(s) can generate markup that gets returned and inserted as the innerHTML of an

adhoc container.

http://www.synapp2.org/documentation/SynApp2_Customization.pdf

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 47
http://www.synapp2.org 2010-04-10

Debug Message Window

You’re almost certainly going to find it useful to monitor the exchange cycle as you develop
and test the pages of your applications.

To cause the Debug Message Window to appear, append "?show_response=1" to the URL

of your SynApp2 generated page, in the address field of your browser, and reload the page.

IMPORTANT: You'll need to enable pop-ups in your web browser in order to see the message
window. You should be able do this, just for your web server, by listing it as an exception.

The Debug Message Window showing the response triggered by a Search event

The first time the message window pops up; it will appear on top of the application window.
Subsequent messaging will be reflected, but not cause the window to appear on top. This

behavior can be changed by adjusting a variable in the source file:_shared_/synapp2.js.

var m_debug_msg_window_to_front = false; //true; // DEFAULT: change as appropriate

By default, the debug message window is not forced to appear on top because it can interfere
with the page element focus behavior. It’s generally better to arrange windows so there is no
overlap.

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 48
http://www.synapp2.org 2010-04-10

You can also use a browser add-on to display exchange details, DOM and CSS elements and
to perform interactive JavaScript source code debugging. The Firebug add-on for Mozilla
Firefox browser is excellent.

If you want to see what’s going on with the PHP side of the framework, you can use the

function add_debug_msg($var_or_expression, 'text_label'). This will dump

values into the response and (open) update the debug message window.

Event Message Window

You may find it useful to monitor the events driving the exchange cycles as you develop and
test the pages of your applications.

The triggering of every exchange cycle is logged in the Event Message Window

To cause the Event Message Window to appear, edit _shared_/synapp2.js. Search for the

variable m_event_msg_is_enabled variable and set its value to true.

var m_event_msg_is_enabled = true;

The first time the event message window pops up; it will appear on top of the application
window. Subsequent messaging will be reflected, but not cause the window to appear on top.
Arrange your windows as needed, to see the messages.

Hard Error Reporting

Under normal circumstances, hard errors should not occur. If they do happen, the debug
message window will appear with data about the failure. Again, if the message window is
already open, it won’t necessarily appear on top. See the discussion about the debug message
window above.

http://getfirebug.com/

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 49
http://www.synapp2.org 2010-04-10

Installation and Deployment

The footprint of a SynApp2 installation is extremely small. Configuration requirements are
minimal and completely segregated. The SynApp2 framework and any applications can be
updated without disturbing the configuration. This makes maintenance super fast and super
easy.

Whether you’re updating SynApp2 or your working applications, you can do it in seconds – just
copy a tiny handful of files to your production server. With (free) FTP software like FileZilla, it’s
a one-step drag and drop operation to deploy newly generated applications or updates on a
remote server.

A view of the SynApp2 installation directory from FileZilla

The GUI for the SynApp2 web application generator is itself, a SynApp2 powered application
and is supported by the MVC framework in exactly the same way as generated applications.
This speaks to the versatility of the framework. You can do just about anything with it.

Below you can see an entire application as generated by SynApp2 according to the steps
detailed in the SynApp2 Walk through No. 1 document:

http://www.synapp2.org/documentation/SynApp2_Walk_through_No1.pdf

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 50
http://www.synapp2.org 2010-04-10

The census application sub-directory show the SynApp2 generated app files, plus a custom page - temp_conv.htm

With appropriate directory/file permissions you can generate applications on any server – local

or remote. If you don’t want that capability to be available, remove the synapp2 application

sub-directory from the installation directory on the server. If you change your mind, at some
point, you can put it back. And, if you want the capability to be available, you can control

access with authorization entries in synapp2/synapp2/custom.inc.php.

Configuration

Configuration of SynApp2 is simple and flexible. Two files in a separate sub-directory control
everything. If you follow a few simple naming conventions, you can create a single, universal
configuration that can be maintained under source code control that works on all of servers
you deal with. You don’t have to change anything unless you add a new server/domain. In the
mean time you just copy your apps to your servers. The details are all taken care of. It just
doesn’t get any easier.

The _config_ sub-directory and files

The key feature of the universal access configuration and control mechanism is the ability to
map database and admin-user name prefixes for different servers/domains. This feature

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 51
http://www.synapp2.org 2010-04-10

allows you to work with generic – logical names – within your apps. When your apps are
deployed, the generic/logical names are automatically mapped to physical names. You just
copy you app files up to the server and you’re done. This is super convenient when you deploy
on servers/domains where you can’t always establish a database or create an admin-user with
just any old names you want.

The details are in the synapp2.install.XXXX.txt files, but the essence of the idea

follows.

Logical application database name: projtrk

Logical application database admin-username: projtrk

Logical synapp2 admin-database: synapp2

Logical synapp2 admin-username: synapp2

For server/domain localhost use name prefix:

For server/domain www.ccxyzzy.com use name prefix: plugh_

On localhost use database and user names: projtrk, synapp2

On www.ccxyzzy.com use database and user names: plugh_projtrk, plugh_synapp2

Authentication and Authorization

There are four user authentication methods available: synapp2, app, direct, and

enterprise. The default mechanism for MySQL is synapp2. Oracle uses direct.

Synapp2 Method

In a nutshell, synapp2 authentication method uses a dedicated database and admin-

username to store usernames and passwords. If you successfully login against that, then
you’re authenticated. Once you’re authenticated, SynApp2 can see if you’re authorized to

access the application database. That involves the application custom.inc.php file. If you

pass that test, then SynApp2 will connect you to the application database using a mapped
admin-username (not usually the one you logged in with).

By default, on a (local) server (when no prefix is defined) the application database(s) are all

accessed with the (privileges of) the synapp2 user. One of the installation steps is to create

the synapp2 user in MySQL.

On a public/remote server (where there is a prefix defined) the application database is

accessed with the (privileges of) the <prefix><database_name> user. This all works if you

create both a database and a user with the same prefixed name. That’s the convention. It’s
possible to change that if you need to. Similarly, on the public/remote server you’re going to

need a <prefix>synapp2 database and <prefix>synapp2 user. This is where you put the

usernames and passwords for that server.

http://www.site_abc.com/
http://www.ccxyzzy.com/
http://www.site_abc.com/

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 52
http://www.synapp2.org 2010-04-10

In the next two panels, look at the diagnostics at the bottom of each message window.

First login attempt (failure):

The exchange response for an unsuccessful authentication/user validation

Second login attempt (success):

The exchange response for a successful authentication and authorization

© 2010 Richard Howell. All rights reserved. SynApp2 Concepts Page 53
http://www.synapp2.org 2010-04-10

In both of the preceding login attempts, the connection to the synapp2 authentication

database was successful. But, the first attempt failed because the user name and password
combination couldn’t be reconciled.

There are a variety of other ways the authentication and authorization can fail to succeed. Use
the debug message window and diagnostic messages to systematically work through what

does and doesn’t work. It’s all pretty straightforward stuff. Look in _shared_/access.php for

the sequence of events.

SynApp2 uses a session cookie on the server to stash a token when the login is successful.
Make sure you do whatever it takes to enable session cookies on your server(s).

Direct Method

There are several other authentication mechanisms. We’ll just touch on the one used, by

default, for Oracle [10g Express Edition]. With the direct method, there is no need for, nor is

the synapp2 authentication database used.

Oracle handles the authentication directly. Both the developer and the user(s) log into
SynApp2 and/or the generated application with the username and password of the schema
owner. In the real world, that’s not such a great idea, so you’ll probably want to delve into
creating application users and granting roles and so forth. Check out the following link for
ideas: http://www.oracle-base.com/articles/misc/SchemaOwnersAndApplicationUsers.php

To use Oracle [10g Express Edition] as the database engine, you’ll need to uncomment one

line in _config_/engine.inc.php , so it looks like the following:

$engine = ENGINE_OCI;

Remove the double slashes (in front of the statement) and save the file.

An installation instance of SynApp2 can only use the configured database engine. So, if you
want to use SynApp2 with more than one database engine, on the same server, you’ll need to
have an installation instance for each engine. That’s easy, just make a different application
directory and put the distribution files there with appropriate configuration and it’s good to go.

App and Enterprise Methods

The remaining authentication methods provide flexibility in two areas. The app method relies

on a user authentication table of user names and passwords in the application database. The

enterprise method is completely open. You can extend the access class with your own

PHP code to interface with an enterprise level authentication system of any size, shape or
form. How you do it is up to you. Upon success, just set the 'happy bits' in the access class
data members appropriately and SynApp2 should go merrily about its business.

http://www.oracle-base.com/articles/misc/SchemaOwnersAndApplicationUsers.php

	SynApp2 Concepts
	Introduction
	Overview
	Model - View - Controller (MVC) Architecture
	Model
	Relations

	View
	Interactive Page Flow
	Navigation Paths

	Forms
	Form Roles
	Screen Image

	Display Size and Page Layout
	About Browsers

	Controller
	Exchange Cycle
	Events
	Page Load
	Page Navigation and Report Tabs
	Search
	Reset
	Browse (Row/Record Navigation)
	Select
	Add
	Edit
	Delete
	Close
	Statistics

	Templates
	Reports
	Custom Processes
	Debug Message Window
	Event Message Window
	Hard Error Reporting
	Installation and Deployment
	Configuration
	Authentication and Authorization
	Synapp2 Method
	Direct Method
	App and Enterprise Methods

